Flow-Based Single-Step Completion for Efficient and Expressive Policy Learning
- URL: http://arxiv.org/abs/2506.21427v2
- Date: Wed, 23 Jul 2025 17:30:42 GMT
- Title: Flow-Based Single-Step Completion for Efficient and Expressive Policy Learning
- Authors: Prajwal Koirala, Cody Fleming,
- Abstract summary: We propose a generative policy trained with an augmented flow-matching objective to predict direct completion vectors from intermediate flow samples.<n>Our method scales effectively to offline, offline-to-online, and online RL settings, offering substantial gains in speed and adaptability.<n>We extend SSCP to goal-conditioned RL, enabling flat policies to exploit subgoal structures without explicit hierarchical inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models such as diffusion and flow-matching offer expressive policies for offline reinforcement learning (RL) by capturing rich, multimodal action distributions, but their iterative sampling introduces high inference costs and training instability due to gradient propagation across sampling steps. We propose the \textit{Single-Step Completion Policy} (SSCP), a generative policy trained with an augmented flow-matching objective to predict direct completion vectors from intermediate flow samples, enabling accurate, one-shot action generation. In an off-policy actor-critic framework, SSCP combines the expressiveness of generative models with the training and inference efficiency of unimodal policies, without requiring long backpropagation chains. Our method scales effectively to offline, offline-to-online, and online RL settings, offering substantial gains in speed and adaptability over diffusion-based baselines. We further extend SSCP to goal-conditioned RL, enabling flat policies to exploit subgoal structures without explicit hierarchical inference. SSCP achieves strong results across standard offline RL and behavior cloning benchmarks, positioning it as a versatile, expressive, and efficient framework for deep RL and sequential decision-making.
Related papers
- EXPO: Stable Reinforcement Learning with Expressive Policies [74.30151915786233]
We propose a sample-efficient online reinforcement learning algorithm to maximize value with two parameterized policies.<n>Our approach yields up to 2-3x improvement in sample efficiency on average over prior methods.
arXiv Detail & Related papers (2025-07-10T17:57:46Z) - Flow-Based Policy for Online Reinforcement Learning [34.86742824686496]
FlowRL is a framework for online reinforcement learning that integrates flow-based policy representation with Wasserstein-2-regularized optimization.<n>We show that FlowRL achieves competitive performance in online reinforcement learning benchmarks.
arXiv Detail & Related papers (2025-06-15T10:53:35Z) - Decision Flow Policy Optimization [53.825268058199825]
We show that generative models can effectively model complex multi-modal action distributions and achieve superior robotic control in continuous action spaces.<n>Previous methods usually adopt the generative models as behavior models to fit state-conditioned action distributions from datasets.<n>We propose Decision Flow, a unified framework that integrates multi-modal action distribution modeling and policy optimization.
arXiv Detail & Related papers (2025-05-26T03:42:20Z) - Prior-Guided Diffusion Planning for Offline Reinforcement Learning [4.760537994346813]
Prior Guidance (PG) is a novel guided sampling framework that replaces the standard Gaussian prior-of-cloned diffusion model.<n>PG directly generates high-value trajectories without costly reward optimization of the diffusion model itself.<n>We present an efficient training strategy that applies behavior regularization in latent space, and empirically demonstrate that PG outperforms state-the-art diffusion policies and planners across diverse long-horizon offline RL benchmarks.
arXiv Detail & Related papers (2025-05-16T05:39:02Z) - Adversarial Policy Optimization for Offline Preference-based Reinforcement Learning [8.087699764574788]
We propose an efficient algorithm for offline preference-based reinforcement learning (PbRL)<n>APPO guarantees sample complexity bounds without relying on explicit confidence sets.<n>To our knowledge, APPO is the first offline PbRL algorithm to offer both statistical efficiency and practical applicability.
arXiv Detail & Related papers (2025-03-07T10:35:01Z) - Online Reward-Weighted Fine-Tuning of Flow Matching with Wasserstein Regularization [14.320131946691268]
We propose an easy-to-use and theoretically sound fine-tuning method for flow-based generative models.<n>By introducing an online rewardweighting mechanism, our approach guides the model to prioritize high-reward regions in the data manifold.<n>Our method achieves optimal policy convergence while allowing controllable trade-offs between reward and diversity.
arXiv Detail & Related papers (2025-02-09T22:45:15Z) - SAIL: Self-Improving Efficient Online Alignment of Large Language Models [56.59644677997827]
Reinforcement Learning from Human Feedback is a key method for aligning large language models with human preferences.
Recent literature has focused on designing online RLHF methods but still lacks a unified conceptual formulation.
Our approach significantly improves alignment performance on open-sourced datasets with minimal computational overhead.
arXiv Detail & Related papers (2024-06-21T18:05:35Z) - Preferred-Action-Optimized Diffusion Policies for Offline Reinforcement Learning [19.533619091287676]
We propose a novel preferred-action-optimized diffusion policy for offline reinforcement learning.
In particular, an expressive conditional diffusion model is utilized to represent the diverse distribution of a behavior policy.
Experiments demonstrate that the proposed method provides competitive or superior performance compared to previous state-of-the-art offline RL methods.
arXiv Detail & Related papers (2024-05-29T03:19:59Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.<n>We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)<n>Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.<n>We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Supported Policy Optimization for Offline Reinforcement Learning [74.1011309005488]
Policy constraint methods to offline reinforcement learning (RL) typically utilize parameterization or regularization.
Regularization methods reduce the divergence between the learned policy and the behavior policy.
This paper presents Supported Policy OpTimization (SPOT), which is directly derived from the theoretical formalization of the density-based support constraint.
arXiv Detail & Related papers (2022-02-13T07:38:36Z) - Iterative Amortized Policy Optimization [147.63129234446197]
Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control.
From the variational inference perspective, policy networks are a form of textitamortized optimization, optimizing network parameters rather than the policy distributions directly.
We demonstrate that iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks.
arXiv Detail & Related papers (2020-10-20T23:25:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.