General and Estimable Learning Bound Unifying Covariate and Concept Shifts
- URL: http://arxiv.org/abs/2506.12829v1
- Date: Sun, 15 Jun 2025 12:18:05 GMT
- Title: General and Estimable Learning Bound Unifying Covariate and Concept Shifts
- Authors: Hongbo Chen, Li Charlie Xia,
- Abstract summary: We bridge the gap between theory and practical applications by developing a novel unified error bound that applies to broad loss functions, label spaces, and labeling.<n>We also develop an algorithm that can quantify the error bound in most distribution shifts -- a rigorous and general tool for analyzing learning error under distribution shift.
- Score: 1.1077154107564848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalization under distribution shift remains a core challenge in modern machine learning, yet existing learning bound theory is limited to narrow, idealized settings and is non-estimable from samples. In this paper, we bridge the gap between theory and practical applications. We first show that existing bounds become loose and non-estimable because their concept shift definition breaks when the source and target supports mismatch. Leveraging entropic optimal transport, we propose new support-agnostic definitions for covariate and concept shifts, and derive a novel unified error bound that applies to broad loss functions, label spaces, and stochastic labeling. We further develop estimators for these shifts with concentration guarantees, and the DataShifts algorithm, which can quantify distribution shifts and estimate the error bound in most applications -- a rigorous and general tool for analyzing learning error under distribution shift.
Related papers
- Navigating Semantic Drift in Task-Agnostic Class-Incremental Learning [51.177789437682954]
Class-incremental learning (CIL) seeks to enable a model to sequentially learn new classes while retaining knowledge of previously learned ones.<n> Balancing flexibility and stability remains a significant challenge, particularly when the task ID is unknown.<n>We propose a novel semantic drift calibration method that incorporates mean shift compensation and covariance calibration.
arXiv Detail & Related papers (2025-02-11T13:57:30Z) - Towards Understanding Extrapolation: a Causal Lens [53.15488984371969]
We provide a theoretical understanding of when extrapolation is possible and offer principled methods to achieve it.<n>Under this formulation, we cast the extrapolation problem into a latent-variable identification problem.<n>Our theory reveals the intricate interplay between the underlying manifold's smoothness and the shift properties.
arXiv Detail & Related papers (2025-01-15T21:29:29Z) - When Invariant Representation Learning Meets Label Shift: Insufficiency and Theoretical Insights [16.72787996847537]
Generalized label shift (GLS) is the latest developed one which shows great potential to deal with the complex factors within the shift.
Main results show the insufficiency of invariant representation learning, and prove the sufficiency and necessity of GLS correction for generalization.
We propose a kernel embedding-based correction algorithm (KECA) to minimize the generalization error and achieve successful knowledge transfer.
arXiv Detail & Related papers (2024-06-24T12:47:21Z) - Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift [9.530897053573186]
This paper introduces a novel dissimilarity measure that utilizes vicinity information, i.e., the local structure of data points.<n>We characterize the excess error using the proposed measure and demonstrate faster or competitive convergence rates compared to previous techniques.
arXiv Detail & Related papers (2024-05-27T07:55:27Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
We introduce a strong notion of invariance that allows for distribution generalization even in the presence of nonlinear, non-identifiable structural functions.<n>We propose the ControlTwicing algorithm to estimate the Boosted Control Function (BCF) using flexible machine-learning techniques.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Generalized Schrödinger Bridge Matching [54.171931505066]
Generalized Schr"odinger Bridge (GSB) problem setup is prevalent in many scientific areas both within and without machine learning.
We propose Generalized Schr"odinger Bridge Matching (GSBM), a new matching algorithm inspired by recent advances.
We show that such a generalization can be cast as solving conditional optimal control, for which variational approximations can be used.
arXiv Detail & Related papers (2023-10-03T17:42:11Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - Fairness Transferability Subject to Bounded Distribution Shift [5.62716254065607]
Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound?
We study the transferability of statistical group fairness for machine learning predictors subject to bounded distribution shifts.
arXiv Detail & Related papers (2022-05-31T22:16:44Z) - An Information-theoretical Approach to Semi-supervised Learning under
Covariate-shift [24.061858945664856]
A common assumption in semi-supervised learning is that the labeled, unlabeled, and test data are drawn from the same distribution.
We propose an approach for semi-supervised learning algorithms that is capable of addressing this issue.
Our framework also recovers some popular methods, including entropy minimization and pseudo-labeling.
arXiv Detail & Related papers (2022-02-24T14:25:14Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.