論文の概要: Fair Bayesian Model-Based Clustering
- arxiv url: http://arxiv.org/abs/2506.12839v1
- Date: Sun, 15 Jun 2025 13:16:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.991836
- Title: Fair Bayesian Model-Based Clustering
- Title(参考訳): フェアベイズモデルに基づくクラスタリング
- Authors: Jihu Lee, Kunwoong Kim, Yongdai Kim,
- Abstract要約: 群フェアネスは、各感度群の比率がすべてのクラスタで類似していることを保証する。
既存のグループフェアクラスタリングメソッドのほとんどは、$K$-meansクラスタリングに基づいている。
フェアベイズクラスタリング (Fair Bayesian Clustering) と呼ばれる, フェアベイズモデルに基づくクラスタリングを提案する。
- 参考スコア(独自算出の注目度): 3.1911375902105386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair clustering has become a socially significant task with the advancement of machine learning technologies and the growing demand for trustworthy AI. Group fairness ensures that the proportions of each sensitive group are similar in all clusters. Most existing group-fair clustering methods are based on the $K$-means clustering and thus require the distance between instances and the number of clusters to be given in advance. To resolve this limitation, we propose a fair Bayesian model-based clustering called Fair Bayesian Clustering (FBC). We develop a specially designed prior which puts its mass only on fair clusters, and implement an efficient MCMC algorithm. Advantages of FBC are that it can infer the number of clusters and can be applied to any data type as long as the likelihood is defined (e.g., categorical data). Experiments on real-world datasets show that FBC (i) reasonably infers the number of clusters, (ii) achieves a competitive utility-fairness trade-off compared to existing fair clustering methods, and (iii) performs well on categorical data.
- Abstract(参考訳): 公正なクラスタリングは、機械学習技術の進歩と、信頼できるAIに対する需要の増加によって、社会的に重要なタスクとなっている。
群フェアネスは、各感度群の比率がすべてのクラスタで類似していることを保証する。
既存のグループフェアクラスタリング手法の多くは、$K$-meansクラスタリングに基づいており、インスタンス間の距離と事前に与えられるクラスタの数を要求する。
この制限を解決するために、フェアベイズクラスタリング(Fair Bayesian Clustering, FBC)と呼ばれるフェアベイズモデルに基づくクラスタリングを提案する。
我々は,その質量を公平なクラスタにのみ配置する,特別に設計された事前設計を行い,効率的なMCMCアルゴリズムを実装した。
FBCの利点は、クラスタの数を推測でき、可能性が定義されている限り任意のデータタイプに適用できることである(例えば、分類データ)。
FBCによる実世界のデータセット実験
(i)クラスタ数を合理的に推測する。
(二)既存の公正クラスタリング手法と比較して、競争力のある実用性と公正なトレードオフを実現し、
(iii)分類データでよく機能する。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
大規模言語モデルは、クエリ効率が良く、数発のセミ教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。
最初の2つのステージにLSMを組み込むことで、クラスタの品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-07-02T09:17:11Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
IAC (Instance-Adaptive Clustering, インスタンス適応クラスタリング) を提案する。
IACは$ MathcalO(n, textpolylog(n) $の計算複雑性を維持しており、大規模問題に対してスケーラブルで実用的なものである。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Socially Fair Center-based and Linear Subspace Clustering [8.355270405285909]
センターベースのクラスタリングと線形サブスペースクラスタリングは、現実世界のデータを小さなクラスタに分割する一般的なテクニックである。
異なる敏感なグループに対する1点当たりのクラスタリングコストは、公平性に関連する害をもたらす可能性がある。
本稿では,社会的に公平なセンタベースのクラスタリングと線形サブスペースクラスタリングを解決するための統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-22T07:10:17Z) - Fair Labeled Clustering [28.297893914525517]
クラスタリングのダウンストリーム適用と,そのような設定に対してグループフェアネスをどのように確保するかを検討する。
このような問題に対するアルゴリズムを提供し、グループフェアクラスタリングにおけるNPハードのアルゴリズムとは対照的に、効率的な解が可能であることを示す。
また、距離空間における中心位置に関係なく、意思決定者が自由にクラスタにラベルを割り当てることができるような、モチベーションのよい代替設定についても検討する。
論文 参考訳(メタデータ) (2022-05-28T07:07:12Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Deep Fair Discriminative Clustering [24.237000220172906]
2値および多状態保護状態変数(PSV)に対するグループレベルの公正性の一般概念について検討する。
本稿では,クラスタリング目標とフェアネス目標とを組み合わせて,フェアクラスタを適応的に学習する改良学習アルゴリズムを提案する。
本フレームワークは, フレキシブルフェアネス制約, マルチステートPSV, 予測クラスタリングなど, 新規なクラスタリングタスクに対して有望な結果を示す。
論文 参考訳(メタデータ) (2021-05-28T23:50:48Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Fair Algorithms for Hierarchical Agglomerative Clustering [17.66340013352806]
Hierarchical Agglomerative Clustering (HAC)アルゴリズムは、現代のデータサイエンスで広く利用されている。
たとえデータセットが特定の保護されたグループに対するバイアスを含むとしても、これらのアルゴリズムが公平であることを保証することが不可欠である。
公平性制約を強制するHACを行うための公正アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-07T01:41:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。