論文の概要: Socially Fair Center-based and Linear Subspace Clustering
- arxiv url: http://arxiv.org/abs/2208.10095v1
- Date: Mon, 22 Aug 2022 07:10:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 14:47:01.021791
- Title: Socially Fair Center-based and Linear Subspace Clustering
- Title(参考訳): 社会的に公正なセンターとリニアサブスペースクラスタリング
- Authors: Sruthi Gorantla, Kishen N. Gowda, Amit Deshpande, Anand Louis
- Abstract要約: センターベースのクラスタリングと線形サブスペースクラスタリングは、現実世界のデータを小さなクラスタに分割する一般的なテクニックである。
異なる敏感なグループに対する1点当たりのクラスタリングコストは、公平性に関連する害をもたらす可能性がある。
本稿では,社会的に公平なセンタベースのクラスタリングと線形サブスペースクラスタリングを解決するための統一的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 8.355270405285909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Center-based clustering (e.g., $k$-means, $k$-medians) and clustering using
linear subspaces are two most popular techniques to partition real-world data
into smaller clusters. However, when the data consists of sensitive demographic
groups, significantly different clustering cost per point for different
sensitive groups can lead to fairness-related harms (e.g., different
quality-of-service). The goal of socially fair clustering is to minimize the
maximum cost of clustering per point over all groups. In this work, we propose
a unified framework to solve socially fair center-based clustering and linear
subspace clustering, and give practical, efficient approximation algorithms for
these problems. We do extensive experiments to show that on multiple benchmark
datasets our algorithms either closely match or outperform state-of-the-art
baselines.
- Abstract(参考訳): センターベースのクラスタリング(例えば$k$-means、$k$-medians)とリニアサブスペースを使ったクラスタリングは、現実世界のデータをより小さなクラスタに分割する最も一般的なテクニックである。
しかしながら、データがセンシティブな人口統計グループで構成されている場合、異なるセンシティブなグループに対するポイント毎のクラスタリングコストが著しく異なり、公正な関連害(例えば、サービス品質の違い)につながる可能性がある。
社会的に公平なクラスタリングの目標は、すべてのグループにおけるポイント毎のクラスタリングの最大コストを最小化することだ。
本研究では,センターベースクラスタリングと線形部分空間クラスタリングを社会的に公平に解決するための統一フレームワークを提案し,これらの問題に対して実用的かつ効率的な近似アルゴリズムを提供する。
複数のベンチマークデータセットにおいて、我々のアルゴリズムが最先端のベースラインと密接に一致するか、またはより優れていることを示すために、広範囲な実験を行いました。
関連論文リスト
- Fair Clustering for Data Summarization: Improved Approximation Algorithms and Complexity Insights [16.120911591795295]
一部のアプリケーションでは、すべてのデータポイントをセンターとして選択できるが、一般的な設定では、施設またはサプライヤーと呼ばれる一連のポイントからセンターを選択する必要がある。
そこで本研究では,複数のグループから構成されるデータに対して,各グループから最小限のセンタを選択する必要がある,公平な$k$-supplier問題としてモデル化された公平なデータ要約に焦点を当てる。
論文 参考訳(メタデータ) (2024-10-16T18:00:19Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Fair Minimum Representation Clustering via Integer Programming [0.6906005491572401]
クラスタリングは、データをクラスタの集合に分割することを目的とした教師なしの学習タスクである。
本稿では,各群が最小表現レベルを持つ必要があるという制約を伴って,k平均とkメダニアンのクラスタリング問題を考察する。
フェアネス制約を直接組み込んだ,MiniReLと呼ばれる交代最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-04T00:13:40Z) - Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - DivClust: Controlling Diversity in Deep Clustering [47.85350249697335]
DivClustはコンセンサスクラスタリングソリューションを生成し、単一クラスタリングベースラインを一貫して上回る。
提案手法は, フレームワークやデータセット間の多様性を, 計算コストを極めて小さく効果的に制御する。
論文 参考訳(メタデータ) (2023-04-03T14:45:43Z) - Cluster-level Group Representativity Fairness in $k$-means Clustering [3.420467786581458]
クラスタリングアルゴリズムは、異なるグループが異なるクラスタ内で不利になるようにクラスタを生成することができる。
我々は,古典的アルゴリズムに先駆けて,セントロイドクラスタリングパラダイムに基づくクラスタリングアルゴリズムを開発した。
本手法はクラスタレベルの表現性フェアネスを,クラスタのコヒーレンスに低い影響で向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-12-29T22:02:28Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
異なるプライベートクラスタリングでは、個々のデータポイントに関する情報を公開せずに、$k$のクラスタセンターを特定することが目標だ。
我々は、データが"簡単"である場合にユーティリティを提供する実装可能な差分プライベートクラスタリングアルゴリズムを提供する。
我々は、非プライベートクラスタリングアルゴリズムを簡単なインスタンスに適用し、結果をプライベートに組み合わせることのできるフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-29T08:13:56Z) - Clustering to the Fewest Clusters Under Intra-Cluster Dissimilarity
Constraints [0.0]
均等なクラスタリングは、密度も期待されるクラスの数にも依存せず、相似性の閾値にも依存します。
このクラスタリング問題に対する様々な実践的ソリューション間のトレードオフを特定するために,適切なクラスタリングアルゴリズムをレビューし,評価する。
論文 参考訳(メタデータ) (2021-09-28T12:02:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。