論文の概要: Uncovering Social Network Activity Using Joint User and Topic Interaction
- arxiv url: http://arxiv.org/abs/2506.12842v1
- Date: Sun, 15 Jun 2025 13:30:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.995726
- Title: Uncovering Social Network Activity Using Joint User and Topic Interaction
- Title(参考訳): 共同ユーザとトピックインタラクションによるソーシャルネットワーク活動の解明
- Authors: Gaspard Abel, Argyris Kalogeratos, Jean-Pierre Nadal, Julien Randon-Furling,
- Abstract要約: 我々は,多次元ホークス過程のモデルであるMixture of Interacting Cascades (MIC)を紹介する。
我々は、情報カスケードとユーザアクティビティの相互作用を強調し、時間的ポイントプロセスの混合を用いて、結合されたユーザ/カスケードポイントプロセスモデルを構築する。
- 参考スコア(独自算出の注目度): 1.894423638201033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of online social platforms, such as social networks and social media, has drastically affected the way people apprehend the information flows to which they are exposed. In such platforms, various information cascades spreading among users is the main force creating complex dynamics of opinion formation, each user being characterized by their own behavior adoption mechanism. Moreover, the spread of multiple pieces of information or beliefs in a networked population is rarely uncorrelated. In this paper, we introduce the Mixture of Interacting Cascades (MIC), a model of marked multidimensional Hawkes processes with the capacity to model jointly non-trivial interaction between cascades and users. We emphasize on the interplay between information cascades and user activity, and use a mixture of temporal point processes to build a coupled user/cascade point process model. Experiments on synthetic and real data highlight the benefits of this approach and demonstrate that MIC achieves superior performance to existing methods in modeling the spread of information cascades. Finally, we demonstrate how MIC can provide, through its learned parameters, insightful bi-layered visualizations of real social network activity data.
- Abstract(参考訳): ソーシャルネットワークやソーシャルメディアなどのオンラインソーシャルプラットフォームの出現は、人々が公開する情報の流れを認識する方法に大きな影響を与えている。
このようなプラットフォームでは、ユーザ間で広がる様々な情報カスケードが、意見形成の複雑なダイナミクスを生み出す主要な力であり、それぞれのユーザが独自の行動導入メカニズムによって特徴づけられる。
さらに、ネットワーク化された集団における複数の情報や信念の拡散は、ほとんど無関係である。
本稿では,多次元ホークス過程のモデルであるMixture of Interacting Cascades(MIC)を紹介し,カスケードとユーザ間の非自明な相互作用をモデル化する能力について述べる。
我々は、情報カスケードとユーザアクティビティの相互作用を強調し、時間的ポイントプロセスの混合を用いて、結合されたユーザ/カスケードポイントプロセスモデルを構築する。
合成および実データに関する実験は、このアプローチの利点を強調し、MICが情報カスケードの拡散をモデル化する既存の手法よりも優れた性能を発揮することを示す。
最後に、MICが学習パラメーターを通じて、実際のソーシャルネットワーク活動データの洞察に富んだ2層可視化をどのように提供できるかを実証する。
関連論文リスト
- InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction [72.50606292994341]
我々はインターリービング方式で異種情報インタラクションを学習するInterFormerという新しいモジュールを提案する。
提案するInterFormerは,3つのパブリックデータセットと大規模産業データセットに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-11-15T00:20:36Z) - Characterizing User Archetypes and Discussions on Scored.co [0.6321194486116923]
ソーシャルハイパーネットワークにおけるノードとハイパーエッジを特徴付けるためのフレームワークを提案する。
Scored.coに焦点をあてる。
本研究は,社会的ダイナミクスの理解における高次相互作用の重要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-07-31T17:18:25Z) - MMoE: Enhancing Multimodal Models with Mixtures of Multimodal Interaction Experts [92.76662894585809]
MMOE(Multimodal Mixtures of Experts)と呼ばれるマルチモーダルモデルの拡張手法を導入する。
MMoEは様々な種類のモデルに適用でき、改善できる。
論文 参考訳(メタデータ) (2023-11-16T05:31:21Z) - Two-stream Multi-level Dynamic Point Transformer for Two-person Interaction Recognition [45.0131792009999]
本稿では,2人インタラクション認識のための2ストリームマルチレベル動的ポイント変換器を提案する。
本モデルでは,局所空間情報,外観情報,動作情報を組み込むことで,対人インタラクションを認識するという課題に対処する。
我々のネットワークは、ほとんどの標準的な評価設定において最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-07-22T03:51:32Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Sparsity-aware neural user behavior modeling in online interaction
platforms [2.4036844268502766]
ユーザ行動モデリングのための一般化可能なニューラル表現学習フレームワークを開発する。
問題設定は、トランスダクティブおよびインダクティブな学習シナリオにまたがる。
ユーザの振る舞いを反映した情報のさまざまな側面を活用して、大規模にパーソナライズされた推論を可能にする。
論文 参考訳(メタデータ) (2022-02-28T00:27:11Z) - Dynamic Representation Learning with Temporal Point Processes for
Higher-Order Interaction Forecasting [8.680676599607123]
本稿では,これらの問題に対処するためのハイパーエッジ予測のための時間点プロセスモデルを提案する。
私たちの知る限りでは、動的ネットワークのハイパーエッジを予測するために時間点プロセスを使った最初の研究である。
論文 参考訳(メタデータ) (2021-12-19T14:24:37Z) - Information Interaction Profile of Choice Adoption [2.9972063833424216]
相互作用するエンティティを分離する時間的距離に応じて、エンティティの相互作用ネットワークとその進化を推定する効率的な方法を紹介します。
相互作用プロファイルは、相互作用プロセスのメカニズムを特徴付けることができます。
ユーザに対する露出の組み合わせの効果は、各露出の独立した効果の総和以上のものであることを示す。
論文 参考訳(メタデータ) (2021-04-28T10:42:25Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。