論文の概要: PersonaFeedback: A Large-scale Human-annotated Benchmark For Personalization
- arxiv url: http://arxiv.org/abs/2506.12915v1
- Date: Sun, 15 Jun 2025 17:19:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.103302
- Title: PersonaFeedback: A Large-scale Human-annotated Benchmark For Personalization
- Title(参考訳): PersonaFeedback: パーソナライズのための大規模人称アノテートベンチマーク
- Authors: Meiling Tao, Chenghao Zhu, Dongyi Ding, Tiannan Wang, Yuchen Eleanor Jiang, Wangchunshu Zhou,
- Abstract要約: 我々は、パーソナライズされた応答を提供するLLMの能力を直接評価する新しいベンチマークであるPersonaFeedbackを紹介する。
過去のインタラクションから暗黙のユーザペルソナを推論するモデルを必要とする既存のベンチマークとは異なり、PersonaFeedbackはパーソナライゼーションからペルソナ推論を分離する。
PersonaFeedbackは8298人の注釈付きテストケースで構成されており、簡単、中、硬い層に分類される。
- 参考スコア(独自算出の注目度): 25.45861816665351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid improvement in the general capabilities of LLMs, LLM personalization, i.e., how to build LLM systems that can generate personalized responses or services that are tailored to distinct user personas, has become an increasingly important research and engineering problem. However, unlike many new challenging benchmarks being released for evaluating the general/reasoning capabilities, the lack of high-quality benchmarks for evaluating LLM personalization greatly hinders progress in this field. To address this, we introduce PersonaFeedback, a new benchmark that directly evaluates LLMs' ability to provide personalized responses given pre-defined user personas and queries. Unlike existing benchmarks that require models to infer implicit user personas from historical interactions, PersonaFeedback decouples persona inference from personalization, focusing on evaluating the model's ability to generate responses tailored to explicit personas. PersonaFeedback consists of 8298 human-annotated test cases, which are categorized into easy, medium, and hard tiers based on the contextual complexity of the user personas and the difficulty in distinguishing subtle differences between two personalized responses. We conduct comprehensive evaluations across a wide range of models. The empirical results reveal that even state-of-the-art LLMs that can solve complex real-world reasoning tasks could fall short on the hard tier of PersonaFeedback where even human evaluators may find the distinctions challenging. Furthermore, we conduct an in-depth analysis of failure modes across various types of systems, demonstrating that the current retrieval-augmented framework should not be seen as a de facto solution for personalization tasks. All benchmark data, annotation protocols, and the evaluation pipeline will be publicly available to facilitate future research on LLM personalization.
- Abstract(参考訳): LLMの汎用能力の急速な向上により、LLMのパーソナライズ、すなわち、異なるユーザペルソナに合わせたパーソナライズされた応答やサービスを生成できるLCMシステムの構築方法が、ますます重要な研究・エンジニアリング問題となっている。
しかし、ジェネラル/推論能力を評価するための多くの新しい挑戦的ベンチマークとは異なり、LLMのパーソナライゼーションを評価するための高品質なベンチマークが欠如していることは、この分野の進歩を著しく妨げている。
そこで本研究では, LLMのパーソナライズされたユーザペルソナとクエリに対して, パーソナライズされた応答を提供する能力を直接評価する新しいベンチマークであるPersonaFeedbackを紹介する。
過去のインタラクションから暗黙のユーザペルソナを推論するモデルを必要とする既存のベンチマークとは異なり、PersonaFeedbackはパーソナライゼーションからペルソナ推論を分離し、明示的なペルソナに合わせた応答を生成するモデルの能力を評価することに重点を置いている。
PersonaFeedbackは、ユーザペルソナのコンテキスト的複雑さと、パーソナライズされた2つの応答の微妙な違いを区別することの難しさに基づいて、簡単、中、硬い階層に分類される8298の人間アノテーションテストケースで構成されている。
幅広いモデルにわたる包括的評価を行う。
実証実験の結果、複雑な現実世界の推論タスクを解くことのできる最先端のLCMでさえ、PersonaFeedbackのハード層では不足する可能性があることが判明した。
さらに, 各種システムにおける障害モードの詳細な解析を行い, 現在の検索強化フレームワークを, パーソナライズタスクのデファクトソリューションとみなすべきではないことを示す。
LLMパーソナライゼーションの今後の研究を促進するため、すべてのベンチマークデータ、アノテーションプロトコル、評価パイプラインが公開されている。
関連論文リスト
- A Personalized Conversational Benchmark: Towards Simulating Personalized Conversations [112.81207927088117]
PersonaConvBenchは、大規模言語モデル(LLM)とのマルチターン会話におけるパーソナライズされた推論と生成を評価するためのベンチマークである。
我々は,複数の商用およびオープンソース LLM を統一的なプロンプト設定でベンチマークし,パーソナライズされた履歴を組み込むことで大幅な性能向上が得られることを観察した。
論文 参考訳(メタデータ) (2025-05-20T09:13:22Z) - Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications [0.0]
大規模言語モデル(LLM)は、さまざまなドメインにまたがって素晴らしいパフォーマンスを示しているが、ドメイン固有の知識の不足、バイアス、幻覚といった問題に直面している。
単語重複やテキスト埋め込みに依存する従来の評価手法は、動的でオープンなテキスト生成を評価するのに必要なニュアンスドセマンティック情報を取得するには不十分である。
本稿では,様々な自然言語生成アプリケーション向けにパーソナライズされたLLM判断器を自動設計する動的マルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2025-04-01T09:36:56Z) - HREF: Human Response-Guided Evaluation of Instruction Following in Language Models [61.273153125847166]
我々は新しい評価ベンチマークHREF(Human Response-Guided Evaluation of Instruction following)を開発した。
HREFは信頼性の高い評価を提供するだけでなく、個々のタスクのパフォーマンスを強調し、汚染を受けない。
本稿では,評価セットのサイズ,判断モデル,ベースラインモデル,プロンプトテンプレートなど,HREFにおける鍵設計選択の影響について検討する。
論文 参考訳(メタデータ) (2024-12-20T03:26:47Z) - PersoBench: Benchmarking Personalized Response Generation in Large Language Models [6.8046587254152735]
我々はペルソベンチ(PersoBench)という,ペルソベンチ(PersoBench)という,個人認識対話生成における大規模言語モデル(LLM)のパーソナライズ能力を評価するベンチマークを提案する。
本分析は, 3つの人格認識データセットを用いて, 流布度, 多様性, 一貫性, パーソナライゼーションなど, 応答品質の多次元性を評価する。
論文 参考訳(メタデータ) (2024-10-04T07:29:41Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
大きな言語モデル(LLM)は、人間のような会話を生成できる。
BLEUやROUGEのような従来のメトリクスは、このような生成出力の微妙な意味と文脈的な豊かさを捉えるには不十分である。
本稿では,複数のLSM-as-judgesを活用することで,評価プロセスを自動化する基準誘導型判定手法を提案する。
論文 参考訳(メタデータ) (2024-08-17T16:01:45Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
データ構築とモデルチューニングを改善するためのフレームワークPersLLMを提案する。
データ利用が不十分な場合には、Chain-of-Thoughtプロンプトやアンチインダクションといった戦略を取り入れます。
厳密な振舞いパターンを設計し,モデルの性格の特異性とダイナミズムを高めるために自動DPOを導入する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Few-shot Personalization of LLMs with Mis-aligned Responses [40.0349773257245]
本稿では,大規模言語モデル(LLM)のパーソナライズのための新しいアプローチを提案する。
私たちのキーとなるアイデアは、LSMを用いてプロンプトを段階的に改善することで、各ユーザに対してパーソナライズされたプロンプトのセットを学ぶことです。
即時改善の反復過程において,LLMによる不整合応答の文脈を取り入れた。
論文 参考訳(メタデータ) (2024-06-26T18:29:12Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
大規模言語モデル(LLM)は、特定のグループや集団の意見が不足している偏りのある応答を生成することが知られている。
本稿では, LLM を用いて特定の視点の制御可能な生成を実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T19:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。