PINNs Algorithmic Framework for Simulation of Nonlinear Burgers' Type Models
- URL: http://arxiv.org/abs/2506.12922v1
- Date: Sun, 15 Jun 2025 17:39:15 GMT
- Title: PINNs Algorithmic Framework for Simulation of Nonlinear Burgers' Type Models
- Authors: Ajeet Singh, Ram Jiwari, Vikram, Ujjwal Saini,
- Abstract summary: A physics-informed neural networks (PINNs) based algorithm is used for simulation of nonlinear 1D and 2D Burgers' type models.<n>Results demonstrate that PINNs may faithfully replicate nonlinear PDE solutions and offer competitive performance in terms of inaccuracy and flexibility.
- Score: 1.124958340749622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, a physics-informed neural networks (PINNs) based algorithm is used for simulation of nonlinear 1D and 2D Burgers' type models. This scheme relies on a neural network built to approximate the problem solution and use a trial function that meets the initial data and boundary criteria. First of all, a brief mathematical formulation of the problem and the structure of PINNs, including the neural network architecture, loss construction, and training methodology is described. Finally, the algorithm is demonstrated with five test problems involving variations of the 1D coupled, 2D single and 2D coupled Burgers' models. We compare the PINN-based solutions with exact results to assess accuracy and convergence of the developed algorithm. The results demonstrate that PINNs may faithfully replicate nonlinear PDE solutions and offer competitive performance in terms of inaccuracy and flexibility. This work demonstrates the potential of PINNs as a reliable approach to solving complex time-dependent PDEs.
Related papers
- Physics-informed neural networks for high-dimensional solutions and snaking bifurcations in nonlinear lattices [0.0]
This paper introduces a framework based on physics-informed neural networks (PINNs) for addressing key challenges in nonlinear lattices.<n>We first employ PINNs to approximate solutions of nonlinear systems arising from lattice models, using the Levenberg-Marquardt algorithm.<n>We then extend the method by coupling PINNs with a continuation approach to compute snaking bifurcation diagrams.<n>For linear stability analysis, we adapt PINNs to compute eigenvectors, introducing output constraints to enforce positivity, in line with Sturm-Liouville theory.
arXiv Detail & Related papers (2025-07-13T20:41:55Z) - High precision PINNs in unbounded domains: application to singularity formulation in PDEs [83.50980325611066]
We study the choices of neural network ansatz, sampling strategy, and optimization algorithm.<n>For 1D Burgers equation, our framework can lead to a solution with very high precision.<n>For the 2D Boussinesq equation, we obtain a solution whose loss is $4$ digits smaller than that obtained in citewang2023asymptotic with fewer training steps.
arXiv Detail & Related papers (2025-06-24T02:01:44Z) - Learning Traveling Solitary Waves Using Separable Gaussian Neural
Networks [0.9065034043031668]
We apply a machine-learning approach to learn traveling solitary waves across various families of partial differential equations (PDEs)
Our approach integrates a novel interpretable neural network (NN) architecture into the framework of Physics-Informed Neural Networks (PINNs)
arXiv Detail & Related papers (2024-03-07T20:16:18Z) - Burgers' pinns with implicit euler transfer learning [0.0]
The Burgers equation is a well-established test case in the computational modeling of several phenomena.
We present the application of Physics-Informed Neural Networks (PINNs) with an implicit Euler transfer learning approach to solve the Burgers equation.
arXiv Detail & Related papers (2023-10-23T20:15:45Z) - Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models [0.0]
We introduce a new approach for solving forward systems of differential equations using a combination of splitting methods and physics-informed neural networks (PINNs)
The proposed method, splitting PINN, effectively addresses the challenge of applying PINNs to forward dynamical systems.
arXiv Detail & Related papers (2023-04-26T00:11:00Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.