A Practical Guide for Evaluating LLMs and LLM-Reliant Systems
- URL: http://arxiv.org/abs/2506.13023v2
- Date: Mon, 21 Jul 2025 05:15:39 GMT
- Title: A Practical Guide for Evaluating LLMs and LLM-Reliant Systems
- Authors: Ethan M. Rudd, Christopher Andrews, Philip Tully,
- Abstract summary: We present a practical evaluation framework which outlines how to proactively curate representative datasets and select meaningful evaluation metrics.<n>We employ meaningful evaluation methodologies that integrate well with practical development and deployment of systems that must adhere to real-world requirements and meet user-facing needs.
- Score: 1.1715858161748576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in generative AI have led to remarkable interest in using systems that rely on large language models (LLMs) for practical applications. However, meaningful evaluation of these systems in real-world scenarios comes with a distinct set of challenges, which are not well-addressed by synthetic benchmarks and de-facto metrics that are often seen in the literature. We present a practical evaluation framework which outlines how to proactively curate representative datasets, select meaningful evaluation metrics, and employ meaningful evaluation methodologies that integrate well with practical development and deployment of LLM-reliant systems that must adhere to real-world requirements and meet user-facing needs.
Related papers
- Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications [0.0]
Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations.<n>Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation.<n>We propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications.
arXiv Detail & Related papers (2025-04-01T09:36:56Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
We introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain.<n>Our benchmark is characterized by its multi-dimensional evaluation framework.<n>Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets.
arXiv Detail & Related papers (2024-12-17T15:38:42Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
We critically assess 23 state-of-the-art Large Language Models (LLMs) benchmarks.
Our research uncovered significant limitations, including biases, difficulties in measuring genuine reasoning, adaptability, implementation inconsistencies, prompt engineering complexity, diversity, and the overlooking of cultural and ideological norms.
arXiv Detail & Related papers (2024-02-15T11:08:10Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
We propose ScaleEval, an agent-debate-assisted meta-evaluation framework.
We release the code for our framework, which is publicly available on GitHub.
arXiv Detail & Related papers (2024-01-30T07:03:32Z) - Post Turing: Mapping the landscape of LLM Evaluation [22.517544562890663]
This paper traces the historical trajectory of Large Language Models (LLMs) evaluations, from the foundational questions posed by Alan Turing to the modern era of AI research.
We emphasize the pressing need for a unified evaluation system, given the broader societal implications of these models.
This work serves as a call for the AI community to collaboratively address the challenges of LLM evaluation, ensuring their reliability, fairness, and societal benefit.
arXiv Detail & Related papers (2023-11-03T17:24:50Z) - Beyond Static Datasets: A Deep Interaction Approach to LLM Evaluation [16.73300162869746]
Large Language Models (LLMs) have made progress in various real-world tasks.
Existing evaluation methods are mainly supervised signal-based.
We propose a novel Deep Interaction-based LLM-evaluation framework.
arXiv Detail & Related papers (2023-09-08T15:00:41Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Truthful Meta-Explanations for Local Interpretability of Machine
Learning Models [10.342433824178825]
We present a local meta-explanation technique which builds on top of the truthfulness metric, which is a faithfulness-based metric.
We demonstrate the effectiveness of both the technique and the metric by concretely defining all the concepts and through experimentation.
arXiv Detail & Related papers (2022-12-07T08:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.