Forecast-Then-Optimize Deep Learning Methods
- URL: http://arxiv.org/abs/2506.13036v1
- Date: Mon, 16 Jun 2025 02:02:30 GMT
- Title: Forecast-Then-Optimize Deep Learning Methods
- Authors: Jinhang Jiang, Nan Wu, Ben Liu, Mei Feng, Xin Ji, Karthik Srinivasan,
- Abstract summary: Time series forecasting underpins vital decision-making across various sectors, yet raw predictions from sophisticated models often harbor systematic errors and biases.<n>We examine the Forecast-Then-Then (FTO) framework, pioneering its systematic synopsis.<n>Deep learning and large language models have established superiority over traditional parametric forecasting models for most enterprise applications.
- Score: 10.067896857251162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting underpins vital decision-making across various sectors, yet raw predictions from sophisticated models often harbor systematic errors and biases. We examine the Forecast-Then-Optimize (FTO) framework, pioneering its systematic synopsis. Unlike conventional Predict-Then-Optimize (PTO) methods, FTO explicitly refines forecasts through optimization techniques such as ensemble methods, meta-learners, and uncertainty adjustments. Furthermore, deep learning and large language models have established superiority over traditional parametric forecasting models for most enterprise applications. This paper surveys significant advancements from 2016 to 2025, analyzing mainstream deep learning FTO architectures. Focusing on real-world applications in operations management, we demonstrate FTO's crucial role in enhancing predictive accuracy, robustness, and decision efficacy. Our study establishes foundational guidelines for future forecasting methodologies, bridging theory and operational practicality.
Related papers
- Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws [52.10468229008941]
This paper formalizes an emerging learning paradigm that uses a trained model as a reference to guide and enhance the training of a target model through strategic data selection or weighting.<n>We provide theoretical insights into why this approach improves generalization and data efficiency compared to training without a reference model.<n>Building on these insights, we introduce a novel method for Contrastive Language-Image Pretraining with a reference model, termed DRRho-CLIP.
arXiv Detail & Related papers (2025-05-10T16:55:03Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry [13.121155604809372]
This study develops a deep learning-based approach to automate inbound load plan adjustments for a large transportation and logistics company.
It addresses a critical challenge for the efficient and resilient planning of E-commerce operations in presence of increasing uncertainties.
arXiv Detail & Related papers (2024-11-26T15:13:13Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.<n>We take the first step to unify all approaches by dissecting them from a decomposition perspective.<n>We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - Understanding the Learning Dynamics of Alignment with Human Feedback [17.420727709895736]
This paper provides an attempt to theoretically analyze the learning dynamics of human preference alignment.
We show how the distribution of preference datasets influences the rate of model updates and provide rigorous guarantees on the training accuracy.
arXiv Detail & Related papers (2024-03-27T16:39:28Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
We present a general framework for continual learning of sequentially arrived tasks with the use of pre-training.
We decompose its objective into three hierarchical components, including within-task prediction, task-identity inference, and task-adaptive prediction.
We propose an innovative approach to explicitly optimize these components with parameter-efficient fine-tuning (PEFT) techniques and representation statistics.
arXiv Detail & Related papers (2023-10-21T02:03:38Z) - Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development [5.207307163958806]
We present an empirical study of the Full.
Time Complexity (FPTC) approach by Zheng et al.
We study the formulations proposed for the Logistic Regression and Random Forest classifiers.
We observe how, from the conducted study, the prediction of training time is strictly related to the context.
arXiv Detail & Related papers (2023-09-20T11:35:03Z) - A Survey of Contextual Optimization Methods for Decision Making under
Uncertainty [47.73071218563257]
This review article identifies three main frameworks for learning policies from data and discusses their strengths and limitations.
We present the existing models and methods under a uniform notation and terminology and classify them according to the three main frameworks.
arXiv Detail & Related papers (2023-06-17T15:21:02Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.