Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry
- URL: http://arxiv.org/abs/2411.17502v1
- Date: Tue, 26 Nov 2024 15:13:13 GMT
- Title: Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry
- Authors: Thomas Bruys, Reza Zandehshahvar, Amira Hijazi, Pascal Van Hentenryck,
- Abstract summary: This study develops a deep learning-based approach to automate inbound load plan adjustments for a large transportation and logistics company.
It addresses a critical challenge for the efficient and resilient planning of E-commerce operations in presence of increasing uncertainties.
- Score: 13.121155604809372
- License:
- Abstract: This study develops a deep learning-based approach to automate inbound load plan adjustments for a large transportation and logistics company. It addresses a critical challenge for the efficient and resilient planning of E-commerce operations in presence of increasing uncertainties. The paper introduces an innovative data-driven approach to inbound load planning. Leveraging extensive historical data, the paper presents a two-stage decision-making process using deep learning and conformal prediction to provide scalable, accurate, and confidence-aware solutions. The first stage of the prediction is dedicated to tactical load-planning, while the second stage is dedicated to the operational planning, incorporating the latest available data to refine the decisions at the finest granularity. Extensive experiments compare traditional machine learning models and deep learning methods. They highlight the importance and effectiveness of the embedding layers for enhancing the performance of deep learning models. Furthermore, the results emphasize the efficacy of conformal prediction to provide confidence-aware prediction sets. The findings suggest that data-driven methods can substantially improve decision making in inbound load planning, offering planners a comprehensive, trustworthy, and real-time framework to make decisions. The initial deployment in the industry setting indicates a high accuracy of the proposed framework.
Related papers
- Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
In some applications, edge learning is experiencing a shift in focusing from conventional learning from scratch to new two-stage learning.
This paper considers the problem of joint communication and computation resource management in a two-stage edge learning system.
It is shown that the proposed joint resource management over the pre-training and fine-tuning stages well balances the system performance trade-off.
arXiv Detail & Related papers (2024-04-01T00:21:11Z) - Deep Limit Order Book Forecasting [2.771933807499954]
We exploit cutting-edge deep learning methodologies to explore predictability of high-frequency Limit Order Book mid-price changes.
We release LOBFrame', an open-source code base to efficiently process large-scale Limit Order Book data.
arXiv Detail & Related papers (2024-03-14T10:44:10Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
We introduce a model-agnostic framework for gathering data to evaluate and improve contextual decision making.
Our method is used for the data-efficient evaluation of the regret of past treatment assignments.
arXiv Detail & Related papers (2022-07-12T01:20:11Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
Trajectory generation and prediction play important roles in planner evaluation and decision making for intelligent vehicles.
We propose a behavior-aware Trajectory Autoencoder (TAE) that explicitly models drivers' behavior.
Our model addresses trajectory generation and prediction in a unified architecture and benefits both tasks.
arXiv Detail & Related papers (2022-03-02T17:37:44Z) - Targeted Active Learning for Bayesian Decision-Making [15.491942513739676]
We argue that when acquiring samples sequentially, separating learning and decision-making is sub-optimal.
We introduce a novel active learning strategy which takes the down-the-line decision problem into account.
Specifically, we introduce a novel active learning criterion which maximizes the expected information gain on the posterior distribution of the optimal decision.
arXiv Detail & Related papers (2021-06-08T09:05:43Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.