論文の概要: Rethinking Explainability in the Era of Multimodal AI
- arxiv url: http://arxiv.org/abs/2506.13060v1
- Date: Mon, 16 Jun 2025 03:08:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.391225
- Title: Rethinking Explainability in the Era of Multimodal AI
- Title(参考訳): マルチモーダルAIの時代における説明可能性の再考
- Authors: Chirag Agarwal,
- Abstract要約: マルチモーダルAIシステムはユビキタスになり、ハイテイクなアプリケーションにまたがって優れたパフォーマンスを実現している。
既存の説明可能性のテクニックの多くは単調のままであり、モダリティ固有の特徴属性、概念、回路トレースを分離して生成する。
本稿では, マルチモーダルモデル決定を駆動するクロスモーダルな影響を, 体系的に誤表現し, 捉えることができないことを論じる。
- 参考スコア(独自算出の注目度): 9.57008593971486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While multimodal AI systems (models jointly trained on heterogeneous data types such as text, time series, graphs, and images) have become ubiquitous and achieved remarkable performance across high-stakes applications, transparent and accurate explanation algorithms are crucial for their safe deployment and ensure user trust. However, most existing explainability techniques remain unimodal, generating modality-specific feature attributions, concepts, or circuit traces in isolation and thus failing to capture cross-modal interactions. This paper argues that such unimodal explanations systematically misrepresent and fail to capture the cross-modal influence that drives multimodal model decisions, and the community should stop relying on them for interpreting multimodal models. To support our position, we outline key principles for multimodal explanations grounded in modality: Granger-style modality influence (controlled ablations to quantify how removing one modality changes the explanation for another), Synergistic faithfulness (explanations capture the model's predictive power when modalities are combined), and Unified stability (explanations remain consistent under small, cross-modal perturbations). This targeted shift to multimodal explanations will help the community uncover hidden shortcuts, mitigate modality bias, improve model reliability, and enhance safety in high-stakes settings where incomplete explanations can have serious consequences.
- Abstract(参考訳): マルチモーダルAIシステム(テキスト、時系列、グラフ、画像などの異種データタイプを共同でトレーニングするモデル)はユビキタスになり、ハイテイクなアプリケーションにまたがる優れたパフォーマンスを実現している一方で、透過的かつ正確な説明アルゴリズムは、安全なデプロイメントとユーザの信頼を確保するために不可欠である。
しかし、既存のほとんどの説明可能性技術は単調なままであり、モダリティ固有の特徴属性、概念、回路トレースを分離して生成し、それによって相互の相互作用を捉えることができない。
本稿は, マルチモーダルモデル決定を駆動するクロスモーダルな影響を, 体系的に誤表現し, 捉えることができず, コミュニティがマルチモーダルモデルを解釈するために, それらに頼るのをやめるべきである,と論じる。
グラガースタイルのモダリティの影響(あるモダリティの除去方法が他のモダリティにどのように変化するかを定量化するための制御されたアブレーション)、シナジスティックの忠実さ(モダリティが組み合わさったときにモデルの予測力を捉える説明)、統一安定性(小さなモダリティの摂動の下では説明は一貫している)。
このマルチモーダルな説明へのシフトは、コミュニティが隠されたショートカットを見つけ出し、モダリティバイアスを緩和し、モデルの信頼性を改善し、不完全な説明が深刻な結果をもたらす場合の安全性を高めるのに役立つ。
関連論文リスト
- Asymmetric Reinforcing against Multi-modal Representation Bias [59.685072206359855]
マルチモーダル表現バイアス(ARM)に対する非対称強化法を提案する。
我々のARMは、条件付き相互情報を通じて支配的なモダリティを表現する能力を維持しながら、弱いモダリティを動的に強化する。
我々はマルチモーダル学習の性能を著しく改善し、不均衡なマルチモーダル学習の軽減に顕著な進展をもたらした。
論文 参考訳(メタデータ) (2025-01-02T13:00:06Z) - Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference [20.761803725098005]
マルチモーダル変分オートエンコーダ(VAE)は、異なるデータモダリティからの情報を統合することで、共有潜在表現をキャプチャすることを目的としている。
重要な課題は、あらゆる可能なモダリティの組み合わせに対して、非現実的な数の推論ネットワークを訓練することなく、任意のモダリティのサブセットから正確に表現を推論することである。
本稿では,マルチモーダルVAEフレームワーク内での反復的改善機構であるマルチモーダル反復補正推論を導入する。
論文 参考訳(メタデータ) (2024-10-15T08:49:38Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - Asynchronous Multimodal Video Sequence Fusion via Learning Modality-Exclusive and -Agnostic Representations [19.731611716111566]
本稿では,モダリティ学習のためのマルチモーダル融合手法を提案する。
我々は、モーダル内の信頼性のあるコンテキストダイナミクスをキャプチャする予測的自己アテンションモジュールを導入する。
階層的クロスモーダルアテンションモジュールは、モダリティ間の価値ある要素相関を探索するために設計されている。
両識別器戦略が提示され、異なる表現を敵対的に生成することを保証する。
論文 参考訳(メタデータ) (2024-07-06T04:36:48Z) - Confidence-aware multi-modality learning for eye disease screening [58.861421804458395]
眼疾患スクリーニングのための新しい多モード顕在核融合パイプラインを提案する。
モダリティごとに信頼度を測り、マルチモダリティ情報をエレガントに統合する。
パブリックデータセットと内部データセットの両方の実験結果は、我々のモデルが堅牢性に優れていることを示している。
論文 参考訳(メタデータ) (2024-05-28T13:27:30Z) - Enhancing Multimodal Unified Representations for Cross Modal Generalization [52.16653133604068]
我々は、コードブック(TOC)のトレーニング不要最適化と、FCID(Fin and Coarse Cross-modal Information Disentangling)を提案する。
これらの方法は、各モードの特定の特性に合わせて、事前学習から統一された離散表現を洗練し、きめ細かな情報と粗い情報の絡み合わせを行う。
論文 参考訳(メタデータ) (2024-03-08T09:16:47Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
相関情報ボトルネック (CIB) は圧縮と表現の冗長性のトレードオフを求める。
マルチモーダル入力と表現の相互情報に対して,理論上界を厳密に導出する。
論文 参考訳(メタデータ) (2022-09-14T22:04:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。