Dynamic Graph Condensation
- URL: http://arxiv.org/abs/2506.13099v1
- Date: Mon, 16 Jun 2025 05:11:29 GMT
- Title: Dynamic Graph Condensation
- Authors: Dong Chen, Shuai Zheng, Yeyu Yan, Muhao Xu, Zhenfeng Zhu, Yao Zhao, Kunlun He,
- Abstract summary: temporal extension in dynamic graphs poses significant data efficiency challenges.<n>We propose DyGC, a framework that condenses the real dynamic graph into a compact version.<n>Our method retains up to 96.2% DGNN performance with only 0.5% of the original graph size, and achieves up to 1846 times training speedup.
- Score: 40.099854631984556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research on deep graph learning has shifted from static to dynamic graphs, motivated by the evolving behaviors observed in complex real-world systems. However, the temporal extension in dynamic graphs poses significant data efficiency challenges, including increased data volume, high spatiotemporal redundancy, and reliance on costly dynamic graph neural networks (DGNNs). To alleviate the concerns, we pioneer the study of dynamic graph condensation (DGC), which aims to substantially reduce the scale of dynamic graphs for data-efficient DGNN training. Accordingly, we propose DyGC, a novel framework that condenses the real dynamic graph into a compact version while faithfully preserving the inherent spatiotemporal characteristics. Specifically, to endow synthetic graphs with realistic evolving structures, a novel spiking structure generation mechanism is introduced. It draws on the dynamic behavior of spiking neurons to model temporally-aware connectivity in dynamic graphs. Given the tightly coupled spatiotemporal dependencies, DyGC proposes a tailored distribution matching approach that first constructs a semantically rich state evolving field for dynamic graphs, and then performs fine-grained spatiotemporal state alignment to guide the optimization of the condensed graph. Experiments across multiple dynamic graph datasets and representative DGNN architectures demonstrate the effectiveness of DyGC. Notably, our method retains up to 96.2% DGNN performance with only 0.5% of the original graph size, and achieves up to 1846 times training speedup.
Related papers
- DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models [16.435352947791923]
We propose a novel Dynamic Graph structure learning framework with the Selective State Space Models (Mamba)<n>Our framework is superior to state-of-the-art baselines against adversarial attacks.
arXiv Detail & Related papers (2024-12-11T07:32:38Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Graph Condensation for Open-World Graph Learning [48.38802327346445]
Graph condensation (GC) has emerged as a promising acceleration solution for efficiently training graph neural networks (GNNs)
Existing GC methods are limited to aligning the condensed graph with merely the observed static graph distribution.
In real-world scenarios, however, graphs are dynamic and constantly evolving, with new nodes and edges being continually integrated.
We propose OpenGC, a robust GC framework that integrates structure-aware distribution shift to simulate evolving graph patterns.
arXiv Detail & Related papers (2024-05-27T09:47:09Z) - Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation [24.20087360102464]
We study the dynamic graph unlearning for the first time and propose an effective, efficient, general, and post-processing method to implement DGNN unlearning.<n>Our method has the potential to handle future unlearning requests with significant performance gains.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Decoupled Graph Neural Networks for Large Dynamic Graphs [14.635923016087503]
We propose a decoupled graph neural network for large dynamic graphs.
We show that our algorithm achieves state-of-the-art performance in both kinds of dynamic graphs.
arXiv Detail & Related papers (2023-05-14T23:00:10Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
This paper focuses on representation learning for dynamic graphs with temporal interactions.
We propose a generic differential model for dynamic graphs that characterises the continuously dynamic evolution of node embedding trajectories.
Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without integration by segments.
arXiv Detail & Related papers (2023-02-22T12:59:38Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
Existing works merely view a dynamic graph as a sequence of changes.
We formulate dynamic graphs as temporal edge sequences associated with joining time of.
vertex and timespan of edges.
A time-aware Transformer is proposed to embed.
vertex' dynamic connections and ToEs into the learned.
vertex representations.
arXiv Detail & Related papers (2022-07-01T15:32:56Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
We propose Instant Graph Neural Network (InstantGNN), an incremental approach for the graph representation matrix of dynamic graphs.
Our method avoids time-consuming, repetitive computations and allows instant updates on the representation and instant predictions.
Our model achieves state-of-the-art accuracy while having orders-of-magnitude higher efficiency than existing methods.
arXiv Detail & Related papers (2022-06-03T03:27:42Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.