DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models
- URL: http://arxiv.org/abs/2412.08160v4
- Date: Thu, 19 Dec 2024 10:01:27 GMT
- Title: DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models
- Authors: Haonan Yuan, Qingyun Sun, Zhaonan Wang, Xingcheng Fu, Cheng Ji, Yongjian Wang, Bo Jin, Jianxin Li,
- Abstract summary: We propose a novel Dynamic Graph structure learning framework with the Selective State Space Models (Mamba)
Our framework is superior to state-of-the-art baselines against adversarial attacks.
- Score: 16.435352947791923
- License:
- Abstract: Dynamic graphs exhibit intertwined spatio-temporal evolutionary patterns, widely existing in the real world. Nevertheless, the structure incompleteness, noise, and redundancy result in poor robustness for Dynamic Graph Neural Networks (DGNNs). Dynamic Graph Structure Learning (DGSL) offers a promising way to optimize graph structures. However, aside from encountering unacceptable quadratic complexity, it overly relies on heuristic priors, making it hard to discover underlying predictive patterns. How to efficiently refine the dynamic structures, capture intrinsic dependencies, and learn robust representations, remains under-explored. In this work, we propose the novel DG-Mamba, a robust and efficient Dynamic Graph structure learning framework with the Selective State Space Models (Mamba). To accelerate the spatio-temporal structure learning, we propose a kernelized dynamic message-passing operator that reduces the quadratic time complexity to linear. To capture global intrinsic dynamics, we establish the dynamic graph as a self-contained system with State Space Model. By discretizing the system states with the cross-snapshot graph adjacency, we enable the long-distance dependencies capturing with the selective snapshot scan. To endow learned dynamic structures more expressive with informativeness, we propose the self-supervised Principle of Relevant Information for DGSL to regularize the most relevant yet least redundant information, enhancing global robustness. Extensive experiments demonstrate the superiority of the robustness and efficiency of our DG-Mamba compared with the state-of-the-art baselines against adversarial attacks.
Related papers
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks (DGNs) have emerged as a family of deep learning models that can process and learn structured information.
This thesis investigates the dynamics of information propagation within DGNs for static and dynamic graphs, focusing on their design as dynamical systems.
arXiv Detail & Related papers (2024-10-14T12:55:51Z) - Informative Subgraphs Aware Masked Auto-Encoder in Dynamic Graphs [1.3571543090749625]
We introduce a constrained probabilistic generative model to generate informative subgraphs that guide the evolution of dynamic graphs.
The informative subgraph identified by DyGIS will serve as the input of dynamic graph masked autoencoder (DGMAE)
arXiv Detail & Related papers (2024-09-14T02:16:00Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - A survey of dynamic graph neural networks [26.162035361191805]
Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data.
This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models.
arXiv Detail & Related papers (2024-04-28T15:07:48Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
Temporal graph learning aims to generate high-quality representations for graph-based tasks with dynamic information.
We propose a self-supervised method called S2T for temporal graph learning, which extracts both temporal and structural information.
S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.
arXiv Detail & Related papers (2023-02-15T06:36:04Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
We propose a novel framework, namely static- and dynamic-graph learning-neural network (GL)
The model acquires static and dynamic graph matrices from data to model long-term and short-term patterns respectively.
It achieves state-of-the-art performance on almost all datasets.
arXiv Detail & Related papers (2021-12-06T08:19:15Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.