論文の概要: Dynamic Reinsurance Treaty Bidding via Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2506.13113v1
- Date: Mon, 16 Jun 2025 05:43:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.503665
- Title: Dynamic Reinsurance Treaty Bidding via Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習による動的Reinsurance Treatyの入札
- Authors: Stella C. Dong, James R. Finlay,
- Abstract要約: 本稿では,再保証条約入札のための新しいマルチエージェント強化学習(MARL)フレームワークを開発する。
MARLエージェントは、最大15%高い引受利益、20%低い尾リスク、25%以上のシャープ比の改善を達成する。
これらの結果は、MARLがより透明性があり、適応的で、リスクに敏感なリシュアランス市場への道を開くことを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper develops a novel multi-agent reinforcement learning (MARL) framework for reinsurance treaty bidding, addressing long-standing inefficiencies in traditional broker-mediated placement processes. We pose the core research question: Can autonomous, learning-based bidding systems improve risk transfer efficiency and outperform conventional pricing approaches in reinsurance markets? In our model, each reinsurer is represented by an adaptive agent that iteratively refines its bidding strategy within a competitive, partially observable environment. The simulation explicitly incorporates institutional frictions including broker intermediation, incumbent advantages, last-look privileges, and asymmetric access to underwriting information. Empirical analysis demonstrates that MARL agents achieve up to 15% higher underwriting profit, 20% lower tail risk (CVaR), and over 25% improvement in Sharpe ratios relative to actuarial and heuristic baselines. Sensitivity tests confirm robustness across hyperparameter settings, and stress testing reveals strong resilience under simulated catastrophe shocks and capital constraints. These findings suggest that MARL offers a viable path toward more transparent, adaptive, and risk-sensitive reinsurance markets. The proposed framework contributes to emerging literature at the intersection of algorithmic market design, strategic bidding, and AI-enabled financial decision-making.
- Abstract(参考訳): 本稿では,従来のブローカーを介する配置プロセスにおける長期的非効率に対処する,再保証条約入札のための新しいマルチエージェント強化学習(MARL)フレームワークを開発する。
自律的な学習ベースの入札システムはリスク伝達効率を改善し、リシュアランス市場における従来の価格のアプローチを上回りますか?
本モデルでは, 各再保険業者は, 競争的かつ部分的に観測可能な環境下で, 入札戦略を反復的に洗練する適応エージェントによって代表される。
このシミュレーションは、ブローカーの仲介、既存の利点、最終見の特権、アンダーライト情報への非対称アクセスを含む制度上の摩擦を明示的に含んでいる。
経験的分析により、MARLエージェントは最大15%高い引受利益、20%低い尾リスク(CVaR)、およびアクチュアリおよびヒューリスティックベースラインに対するシャープ比が25%以上の改善を達成できることが示された。
感度テストは、ハイパーパラメータ設定全体で堅牢性を確認し、ストレステストは、シミュレートされたカタストロフィショックと資本制約の下で強力なレジリエンスを示す。
これらの結果は、MARLがより透明性があり、適応的で、リスクに敏感なリシュアランス市場への道を開くことを示唆している。
提案するフレームワークは,アルゴリズム市場設計,戦略的入札,AIによる金融意思決定の交差点における新興文献に寄与する。
関連論文リスト
- The Real Barrier to LLM Agent Usability is Agentic ROI [110.31127571114635]
大規模言語モデル(LLM)エージェントは、人間とAIの相互作用において有望な変化を示す。
我々は、需要の高いマスマーケットアプリケーションにおいて、重要なユーザビリティギャップを強調します。
論文 参考訳(メタデータ) (2025-05-23T11:40:58Z) - Adaptive Insurance Reserving with CVaR-Constrained Reinforcement Learning under Macroeconomic Regimes [0.0]
本稿では、テールリスク感度、マクロ経済体制モデリング、規制コンプライアンスを統合した保険保留のための強化学習(RL)フレームワークを提案する。
このフレームワークは、固定ショックストレステストとシステマティック・ストラテライズド・アナリティクスに対応しており、不確実性の下での維持に原則的で原則化されたアプローチを提供する。
論文 参考訳(メタデータ) (2025-04-13T01:43:25Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
ポートフォリオ全体のリターンと潜在的なリスクの間のトレードオフのバランスをとるために,マルチエージェント強化学習(RL)アプローチを提案する。
得られた実験結果から,提案したMASAフレームワークの有効性が明らかとなった。
論文 参考訳(メタデータ) (2024-02-01T11:31:26Z) - Insurance pricing on price comparison websites via reinforcement
learning [7.023335262537794]
本稿では,モデルベースとモデルフリーの手法を統合することで,最適価格政策を学習する強化学習フレームワークを提案する。
また、オフラインデータセットを一貫した方法で価格ポリシーを評価することの重要性を強調した。
論文 参考訳(メタデータ) (2023-08-14T04:44:56Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
我々は,MARL(Multi-Agent Reinforcement Learning)における分散政策の最適化のための新しい単調改善保証を提案する。
本研究では,訓練中のエージェント数に基づいて,独立した比率を限定することにより,信頼領域の制約を原則的に効果的に実施可能であることを示す。
論文 参考訳(メタデータ) (2022-01-31T20:39:48Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。