論文の概要: Adaptive Insurance Reserving with CVaR-Constrained Reinforcement Learning under Macroeconomic Regimes
- arxiv url: http://arxiv.org/abs/2504.09396v1
- Date: Sun, 13 Apr 2025 01:43:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:56:05.699009
- Title: Adaptive Insurance Reserving with CVaR-Constrained Reinforcement Learning under Macroeconomic Regimes
- Title(参考訳): CVaR制約強化学習を用いたマクロ経済レジーム下での適応型保険保留
- Authors: Stella C. Dong, James R. Finlay,
- Abstract要約: 本稿では、テールリスク感度、マクロ経済体制モデリング、規制コンプライアンスを統合した保険保留のための強化学習(RL)フレームワークを提案する。
このフレームワークは、固定ショックストレステストとシステマティック・ストラテライズド・アナリティクスに対応しており、不確実性の下での維持に原則的で原則化されたアプローチを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper proposes a reinforcement learning (RL) framework for insurance reserving that integrates tail-risk sensitivity, macroeconomic regime modeling, and regulatory compliance. The reserving problem is formulated as a finite-horizon Markov Decision Process (MDP), in which reserve adjustments are optimized using Proximal Policy Optimization (PPO) subject to Conditional Value-at-Risk (CVaR) constraints. To enhance policy robustness across varying economic conditions, the agent is trained using a regime-aware curriculum that progressively increases volatility exposure. The reward structure penalizes reserve shortfall, capital inefficiency, and solvency floor violations, with design elements informed by Solvency II and Own Risk and Solvency Assessment (ORSA) frameworks. Empirical evaluations on two industry datasets--Workers' Compensation, and Other Liability--demonstrate that the RL-CVaR agent achieves superior performance relative to classical reserving methods across multiple criteria, including tail-risk control (CVaR$_{0.95}$), capital efficiency, and regulatory violation rate. The framework also accommodates fixed-shock stress testing and regime-stratified analysis, providing a principled and extensible approach to reserving under uncertainty.
- Abstract(参考訳): 本稿では、テールリスク感度、マクロ経済体制モデリング、規制コンプライアンスを統合した保険保留のための強化学習(RL)フレームワークを提案する。
保存問題は有限水平マルコフ決定過程 (MDP) として定式化され, 条件付き値-アット・リスク (CVaR) 制約を条件としたPPO (Proximal Policy Optimization) を用いて予約調整を行う。
様々な経済状況における政策の堅牢性を高めるため、段階的にボラティリティの露出を増加させるレジーム対応カリキュラムを用いて、エージェントを訓練する。
報酬構造は、準備不足、資本不効率、および解決フロア違反を罰し、Solvency II と Own Risk and Solvency Assessment (ORSA) フレームワークによって通知される設計要素である。
RL-CVaRエージェントは、尾リスク制御(CVaR$_{0.95}$)、資本効率、規制違反率など、複数の基準で古典的保存方法と比較して優れた性能を発揮することを実証する。
このフレームワークは、固定ショックストレステストとシステマティック・ストラテライズド・アナリティクスに対応しており、不確実性の下での保存に対する原則的で拡張可能なアプローチを提供する。
関連論文リスト
- A Hybrid Framework for Reinsurance Optimization: Integrating Generative Models and Reinforcement Learning [0.0]
再保険の最適化は、保険会社にとってリスク露光の管理、金融安定の確保、解決性維持に不可欠である。
伝統的なアプローチは、しばしば動的なクレーム分布、高次元の制約、市場条件の進化に苦しむ。
本稿では、生成モデルと強化学習を統合した新しいハイブリッドフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-11T02:02:32Z) - Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning [4.8342038441006805]
金融、ヘルスケア、ロボティクスといった分野では、最悪のシナリオを管理することが重要です。
分散強化学習(DRL)は、リスク感受性を意思決定プロセスに組み込む自然な枠組みを提供する。
より広範な静的スペクトルリスク対策(SRM)を最適化する収束保証付きDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-03T20:25:41Z) - Robust Risk-Sensitive Reinforcement Learning with Conditional Value-at-Risk [23.63388546004777]
我々はロバスト・マルコフ決定過程の下でCVaRに基づくリスク感受性RLのロバスト性を分析する。
実世界の問題における意思決定依存の不確実性の存在を動機として、状態行動依存曖昧性集合による問題を研究する。
論文 参考訳(メタデータ) (2024-05-02T20:28:49Z) - A Reductions Approach to Risk-Sensitive Reinforcement Learning with Optimized Certainty Equivalents [44.09686403685058]
本研究の目的は,累積報酬のリスク尺度を最適化する履歴依存政策を学習することである。
楽観主義に基づくメタアルゴリズムと政策勾配に基づくメタアルゴリズムを提案する。
我々は,提案アルゴリズムが概念実証MDPで最適な履歴依存ポリシーを学習できることを実証的に示す。
論文 参考訳(メタデータ) (2024-03-10T21:45:12Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
本稿では,リスク感性分布強化学習(RS-DisRL)と静的リプシッツリスク対策(LRM),一般関数近似について紹介する。
モデルに基づく関数近似のためのモデルベース戦略であるtextttRS-DisRL-M と、一般値関数近似のためのモデルフリーアプローチである textttRS-DisRL-V の2つの革新的なメタアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-28T08:43:18Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
本稿では,複数の制約仕様を事前に特定しない制約付き強化学習(RL)のクラスについて検討する。
報酬訓練目標と制約満足度との間に不明確なトレードオフがあるため、適切な制約仕様を特定することは困難である。
我々は、ポリシーと制約仕様を一緒に検索する新しい制約付きRLアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:28:23Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Efficient Off-Policy Safe Reinforcement Learning Using Trust Region
Conditional Value at Risk [16.176812250762666]
TRCと呼ばれるオンライン安全なRL法は、信頼領域法を用いてCVaR制約されたRL問題を扱う。
複雑な環境下での優れた性能を実現し、安全制約を迅速に満たすためには、RL法を効率的にサンプリングする必要がある。
本稿では,分散シフトの効果を低減できる新しいサロゲート関数を提案するとともに,リプレイバッファから遠く離れないようにするためのアダプティブな信頼領域制約を導入する。
論文 参考訳(メタデータ) (2023-12-01T04:29:19Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
リスクに敏感な強化学習は、期待される報酬とリスクのバランスをとるポリシーを最適化することを目的としている。
本稿では,線形および一般関数近似の下で,CVaR(Iterated Conditional Value-at-Risk)を目標とする新しいフレームワークを提案する。
本稿では,この反復CVaR RLに対するサンプル効率の高いアルゴリズムを提案し,厳密な理論的解析を行う。
論文 参考訳(メタデータ) (2023-07-06T08:14:54Z) - A Risk-Sensitive Approach to Policy Optimization [21.684251937825234]
標準深層強化学習(DRL)は、政策の定式化における収集経験を均等に考慮し、期待される報酬を最大化することを目的としている。
そこで本研究では,フルエピソード報酬の分布の累積分布関数 (CDF) で規定されるリスク感性目標を最適化する,より直接的なアプローチを提案する。
エージェントの動作が不十分なシナリオを強調する中程度の「悲観的」リスクプロファイルの使用が,探索の強化と,障害への継続的な対処に繋がることを示す。
論文 参考訳(メタデータ) (2022-08-19T00:55:05Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
オフラインの制約付き強化学習(RL)問題。エージェントは、所定のコスト制約を満たしながら期待されるリターンを最大化するポリシーを計算し、事前に収集されたデータセットからのみ学習する。
定常分布空間におけるポリシーを最適化するオフライン制約付きRLアルゴリズムを提案する。
我々のアルゴリズムであるCOptiDICEは、コスト上限を制約しながら、利益に対する最適政策の定常分布補正を直接見積もる。
論文 参考訳(メタデータ) (2022-04-19T15:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。