Energy-Efficient Digital Design: A Comparative Study of Event-Driven and Clock-Driven Spiking Neurons
- URL: http://arxiv.org/abs/2506.13268v1
- Date: Mon, 16 Jun 2025 09:10:19 GMT
- Title: Energy-Efficient Digital Design: A Comparative Study of Event-Driven and Clock-Driven Spiking Neurons
- Authors: Filippo Marostica, Alessio Carpegna, Alessandro Savino, Stefano Di Carlo,
- Abstract summary: This paper presents a comprehensive evaluation of Spiking Neural Network (SNN) neuron models for hardware acceleration.<n>We begin our investigation in software, rapidly prototyping and testing various SNN models based on different variants of the Leaky Integrate and Fire (LIF) neuron.<n>Our subsequent hardware phase, implemented on FPGA, validates the simulation findings and offers practical insights into design trade offs.
- Score: 42.170149806080204
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a comprehensive evaluation of Spiking Neural Network (SNN) neuron models for hardware acceleration by comparing event driven and clock-driven implementations. We begin our investigation in software, rapidly prototyping and testing various SNN models based on different variants of the Leaky Integrate and Fire (LIF) neuron across multiple datasets. This phase enables controlled performance assessment and informs design refinement. Our subsequent hardware phase, implemented on FPGA, validates the simulation findings and offers practical insights into design trade offs. In particular, we examine how variations in input stimuli influence key performance metrics such as latency, power consumption, energy efficiency, and resource utilization. These results yield valuable guidelines for constructing energy efficient, real time neuromorphic systems. Overall, our work bridges software simulation and hardware realization, advancing the development of next generation SNN accelerators.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - A Fully Hardware Implemented Accelerator Design in ReRAM Analog Computing without ADCs [5.6496088684920345]
ReRAM-based accelerators process neural networks via analog Computing-in-Memory (CiM) for ultra-high energy efficiency.<n>This work explores the hardware implementation of the Sigmoid and SoftMax activation functions of neural networks with crossbarally binarized neurons.<n>We propose a complete ReRAM-based Analog Computing Accelerator (RACA) that accelerates neural network computation by leveraging inferenceally binarized neurons.
arXiv Detail & Related papers (2024-12-27T09:38:19Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a software spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.<n>We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Applying generative neural networks for fast simulations of the ALICE (CERN) experiment [0.0]
This thesis investigates the application of state-of-the-art advances in generative neural networks for fast simulation of the Zero Degree Calorimeter (ZDC) neutron detector at CERN.
Traditional simulation methods using the GEANT Monte Carlo toolkit, while accurate, are computationally demanding.
The thesis provides a comprehensive literature review on the application of neural networks in computer vision, fast simulations using machine learning, and generative neural networks in high-energy physics.
arXiv Detail & Related papers (2024-07-10T17:08:59Z) - GPU-RANC: A CUDA Accelerated Simulation Framework for Neuromorphic Architectures [1.3401966602181168]
We introduce the GPU-based implementation of Reconfigurable Architecture for Neuromorphic Computing (RANC)
We demonstrate up to 780 times speedup compared to serial version of the RANC simulator based on a 512 neuromorphic core MNIST inference application.
arXiv Detail & Related papers (2024-04-24T21:08:21Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks [0.0]
This paper presents an innovative methodology for improving the robustness and computational efficiency of Spiking Neural Networks (SNNs)
The proposed approach integrates astrocytes, a type of glial cell prevalent in the human brain, into SNNs, creating astrocyte-augmented networks.
Notably, our astrocyte-augmented SNN displays near-zero latency and theoretically infinite throughput, implying exceptional computational efficiency.
arXiv Detail & Related papers (2023-09-15T08:02:29Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.