A Fully Hardware Implemented Accelerator Design in ReRAM Analog Computing without ADCs
- URL: http://arxiv.org/abs/2412.19869v1
- Date: Fri, 27 Dec 2024 09:38:19 GMT
- Title: A Fully Hardware Implemented Accelerator Design in ReRAM Analog Computing without ADCs
- Authors: Peng Dang, Huawei Li, Wei Wang,
- Abstract summary: ReRAM-based accelerators process neural networks via analog Computing-in-Memory (CiM) for ultra-high energy efficiency.
This work explores the hardware implementation of the Sigmoid and SoftMax activation functions of neural networks with crossbarally binarized neurons.
We propose a complete ReRAM-based Analog Computing Accelerator (RACA) that accelerates neural network computation by leveraging inferenceally binarized neurons.
- Score: 5.6496088684920345
- License:
- Abstract: Emerging ReRAM-based accelerators process neural networks via analog Computing-in-Memory (CiM) for ultra-high energy efficiency. However, significant overhead in peripheral circuits and complex nonlinear activation modes constrain system energy efficiency improvements. This work explores the hardware implementation of the Sigmoid and SoftMax activation functions of neural networks with stochastically binarized neurons by utilizing sampled noise signals from ReRAM devices to achieve a stochastic effect. We propose a complete ReRAM-based Analog Computing Accelerator (RACA) that accelerates neural network computation by leveraging stochastically binarized neurons in combination with ReRAM crossbars. The novel circuit design removes significant sources of energy/area efficiency degradation, i.e., the Digital-to-Analog and Analog-to-Digital Converters (DACs and ADCs) as well as the components to explicitly calculate the activation functions. Experimental results show that our proposed design outperforms traditional architectures across all overall performance metrics without compromising inference accuracy.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.
embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.
split computing - where an SNN is partitioned across two devices - is a promising solution.
This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Towards training digitally-tied analog blocks via hybrid gradient computation [1.800676987432211]
We introduce Feedforward-tied Energy-based Models (ff-EBMs)
We derive a novel algorithm to compute gradients end-to-end in ff-EBMs by backpropagating and "eq-propagating" through feedforward and energy-based parts respectively.
Our approach offers a principled, scalable, and incremental roadmap to gradually integrate self-trainable analog computational primitives into existing digital accelerators.
arXiv Detail & Related papers (2024-09-05T07:22:19Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - Neural-PIM: Efficient Processing-In-Memory with Neural Approximation of
Peripherals [11.31429464715989]
This paper presents a new PIM architecture to efficiently accelerate deep learning tasks.
It is proposed to minimize the required A/D conversions with analog accumulation and neural approximated peripheral circuits.
Evaluations on different benchmarks demonstrate that Neural-PIM can improve energy efficiency by 5.36x (1.73x) and speed up throughput by 3.43x (1.59x) without losing accuracy.
arXiv Detail & Related papers (2022-01-30T16:14:49Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
In-memory computing mixed-signal neuromorphic architectures provide promising ultra-low-power solutions for edge-computing sensory-processing applications.
We present a set of mixed-signal analog/digital circuits that exploit the features of advanced Fully-Depleted Silicon on Insulator (FDSOI) integration processes.
arXiv Detail & Related papers (2020-06-25T09:31:29Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.