Automatic Multi-View X-Ray/CT Registration Using Bone Substructure Contours
- URL: http://arxiv.org/abs/2506.13292v1
- Date: Mon, 16 Jun 2025 09:33:37 GMT
- Title: Automatic Multi-View X-Ray/CT Registration Using Bone Substructure Contours
- Authors: Roman Flepp, Leon Nissen, Bastian Sigrist, Arend Nieuwland, Nicola Cavalcanti, Philipp Fürnstahl, Thomas Dreher, Lilian Calvet,
- Abstract summary: We propose a novel multi-view X-ray/CT registration method for intraoperative bone registration.<n>Method consists of a multi-view, contour-based iterative closest point (ICP) optimization.<n>Method consistently achieves sub-millimeter accuracy with a mRPD 0.67mm compared to 5.35mm by a commercial solution.
- Score: 0.5949599220326207
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Purpose: Accurate intraoperative X-ray/CT registration is essential for surgical navigation in orthopedic procedures. However, existing methods struggle with consistently achieving sub-millimeter accuracy, robustness under broad initial pose estimates or need manual key-point annotations. This work aims to address these challenges by proposing a novel multi-view X-ray/CT registration method for intraoperative bone registration. Methods: The proposed registration method consists of a multi-view, contour-based iterative closest point (ICP) optimization. Unlike previous methods, which attempt to match bone contours across the entire silhouette in both imaging modalities, we focus on matching specific subcategories of contours corresponding to bone substructures. This leads to reduced ambiguity in the ICP matches, resulting in a more robust and accurate registration solution. This approach requires only two X-ray images and operates fully automatically. Additionally, we contribute a dataset of 5 cadaveric specimens, including real X-ray images, X-ray image poses and the corresponding CT scans. Results: The proposed registration method is evaluated on real X-ray images using mean reprojection error (mRPD). The method consistently achieves sub-millimeter accuracy with a mRPD 0.67mm compared to 5.35mm by a commercial solution requiring manual intervention. Furthermore, the method offers improved practical applicability, being fully automatic. Conclusion: Our method offers a practical, accurate, and efficient solution for multi-view X-ray/CT registration in orthopedic surgeries, which can be easily combined with tracking systems. By improving registration accuracy and minimizing manual intervention, it enhances intraoperative navigation, contributing to more accurate and effective surgical outcomes in computer-assisted surgery (CAS).
Related papers
- A Novel Coronary Artery Registration Method Based on Super-pixel Particle Swarm Optimization [2.991631700415871]
We propose a novel multimodal coronary artery image registration method based on a swarm optimization algorithm.<n>Our algorithm was evaluated on a pilot dataset of 28 pairs of XRA and CTA images from 10 patients who underwent PCI.
arXiv Detail & Related papers (2025-05-30T08:44:46Z) - Monocular Marker-free Patient-to-Image Intraoperative Registration for Cochlear Implant Surgery [4.250558597144547]
Our framework seamlessly integrates with monocular surgical microscopes, making it highly practical for clinical use without additional hardware dependencies and requirements.<n>Our results suggest that our approach achieves clinically relevant accuracy in predicting 6D camera poses for registering 3D preoperative CT scans to 2D surgical scenes with an angular error within 10 degrees in most cases.
arXiv Detail & Related papers (2025-05-23T21:15:00Z) - IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration [0.46904601975060667]
IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration) is a novel similarity metric designed for robust multimodal image registration.<n>It defines a semantic similarity measure based on the comparison of deep features extracted from large-scale pretrained segmentation models.<n>It was evaluated on five challenging 3D registration tasks involving thoracic CT/CBCT and pelvic MR/CT datasets.
arXiv Detail & Related papers (2025-03-31T14:08:21Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [48.21287619304126]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - SX-Stitch: An Efficient VMS-UNet Based Framework for Intraoperative Scoliosis X-Ray Image Stitching [11.33670620110502]
In scoliosis surgery, the limited field of view of the C-arm X-ray machine restricts the surgeons' holistic analysis of spinal structures.
This paper presents an end-to-end efficient and robust intraoperative X-ray image stitching method for scoliosis surgery,named SX-Stitch.
arXiv Detail & Related papers (2024-09-09T14:49:54Z) - X-Ray to CT Rigid Registration Using Scene Coordinate Regression [1.1687067206676627]
This paper proposes a fully automatic registration method that is robust to extreme viewpoints.
It is based on a fully convolutional neural network (CNN) that regresses the overlapping coordinates for a given X-ray image.
The proposed method achieved an average mean target registration error (mTRE) of 3.79 mm in the 50th percentile of the simulated test dataset and projected mTRE of 9.65 mm in the 50th percentile of real fluoroscopic images for pelvis registration.
arXiv Detail & Related papers (2023-11-25T17:48:46Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose Estimation of Surgical Instruments [64.59698930334012]
We present a multi-camera capture setup consisting of static and head-mounted cameras.<n>Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.<n>Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Pelphix: Surgical Phase Recognition from X-ray Images in Percutaneous
Pelvic Fixation [11.805185173756708]
Surgical phase recognition (SPR) is a crucial element in the digital transformation of the modern operating theater.
This paper presents Pelphix, a first approach to SPR for X-ray-guided percutaneous pelvic fracture fixation.
Using added supervision from detection of bony corridors, tools, and anatomy, we learn image representations that are fed into a transformer model to regress surgical phases.
Our approach demonstrates the feasibility of X-ray-based SPR, achieving an average accuracy of 93.8% on simulated sequences and 67.57% in cadaver.
arXiv Detail & Related papers (2023-04-18T20:48:14Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.