A Novel Coronary Artery Registration Method Based on Super-pixel Particle Swarm Optimization
- URL: http://arxiv.org/abs/2505.24351v1
- Date: Fri, 30 May 2025 08:44:46 GMT
- Title: A Novel Coronary Artery Registration Method Based on Super-pixel Particle Swarm Optimization
- Authors: Peng Qi, Wenxi Qu, Tianliang Yao, Haonan Ma, Dylan Wintle, Yinyi Lai, Giorgos Papanastasiou, Chengjia Wang,
- Abstract summary: We propose a novel multimodal coronary artery image registration method based on a swarm optimization algorithm.<n>Our algorithm was evaluated on a pilot dataset of 28 pairs of XRA and CTA images from 10 patients who underwent PCI.
- Score: 2.991631700415871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Percutaneous Coronary Intervention (PCI) is a minimally invasive procedure that improves coronary blood flow and treats coronary artery disease. Although PCI typically requires 2D X-ray angiography (XRA) to guide catheter placement at real-time, computed tomography angiography (CTA) may substantially improve PCI by providing precise information of 3D vascular anatomy and status. To leverage real-time XRA and detailed 3D CTA anatomy for PCI, accurate multimodal image registration of XRA and CTA is required, to guide the procedure and avoid complications. This is a challenging process as it requires registration of images from different geometrical modalities (2D -> 3D and vice versa), with variations in contrast and noise levels. In this paper, we propose a novel multimodal coronary artery image registration method based on a swarm optimization algorithm, which effectively addresses challenges such as large deformations, low contrast, and noise across these imaging modalities. Our algorithm consists of two main modules: 1) preprocessing of XRA and CTA images separately, and 2) a registration module based on feature extraction using the Steger and Superpixel Particle Swarm Optimization algorithms. Our technique was evaluated on a pilot dataset of 28 pairs of XRA and CTA images from 10 patients who underwent PCI. The algorithm was compared with four state-of-the-art (SOTA) methods in terms of registration accuracy, robustness, and efficiency. Our method outperformed the selected SOTA baselines in all aspects. Experimental results demonstrate the significant effectiveness of our algorithm, surpassing the previous benchmarks and proposes a novel clinical approach that can potentially have merit for improving patient outcomes in coronary artery disease.
Related papers
- Automatic Multi-View X-Ray/CT Registration Using Bone Substructure Contours [0.5949599220326207]
We propose a novel multi-view X-ray/CT registration method for intraoperative bone registration.<n>Method consists of a multi-view, contour-based iterative closest point (ICP) optimization.<n>Method consistently achieves sub-millimeter accuracy with a mRPD 0.67mm compared to 5.35mm by a commercial solution.
arXiv Detail & Related papers (2025-06-16T09:33:37Z) - X-ray2CTPA: Leveraging Diffusion Models to Enhance Pulmonary Embolism Classification [24.233484690096898]
Chest X-rays or chest radiography (CXR) enables limited imaging compared to computed tomography (CT) scans.<n>CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs.<n>In this work we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolutionA scan.
arXiv Detail & Related papers (2024-06-23T13:53:35Z) - Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy [9.060365057476133]
Cervical cancer is one of the leading causes of death in women.
We propose a preliminary spatial alignment algorithm and a weakly supervised multimodal registration network.
arXiv Detail & Related papers (2024-05-21T15:05:51Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - UDCR: Unsupervised Aortic DSA/CTA Rigid Registration Using Deep
Reinforcement Learning and Overlap Degree Calculation [12.201553863670155]
We propose an unsupervised method, UDCR, for aortic DSA/CTA rigid registration based on deep reinforcement learning.
We manually annotated 61 pairs of aortic DSA/CTA for algorithm evaluation. The results indicate that the proposed UDCR achieved a Mean Absolute Error (MAE) of 2.85 mm in translation and 4.35deg in rotation.
arXiv Detail & Related papers (2024-03-09T01:18:32Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Does image resolution impact chest X-ray based fine-grained
Tuberculosis-consistent lesion segmentation? [3.3086274755158325]
Deep learning models are reportedly trained on reduced image resolutions citing reasons for the lack of computational resources.
This study investigated performance gains achieved through training an Inception-V3-based UNet model using various image/mask resolutions.
arXiv Detail & Related papers (2023-01-10T15:34:39Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.