Emergence of an Epsilon-Near-Zero Medium from Microscopic Atomic Principles
- URL: http://arxiv.org/abs/2506.13294v1
- Date: Mon, 16 Jun 2025 09:35:02 GMT
- Title: Emergence of an Epsilon-Near-Zero Medium from Microscopic Atomic Principles
- Authors: L. Ruks, J. Ruostekoski,
- Abstract summary: We show that an effective near-zero refractive index can emerge from collective light scattering in a discrete atomic lattice, using essentially exact microscopic simulations.<n>In a 25-layer array, cooperative response leads to over a thirtyfold increase in the effective optical wavelength within the medium.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that an effective near-zero refractive index can emerge from collective light scattering in a discrete atomic lattice, using essentially exact microscopic simulations. In a 25-layer array, cooperative response leads to over a thirtyfold increase in the effective optical wavelength within the medium, almost eliminating optical phase accumulation, with potential applications in spectroscopy and optical manipulation of quantum emitters. Crucially, the near-zero refractive index arises from first-principles microscopic theory, rather than being imposed through continuous phenomenological effective-medium model - providing conceptually important insight into the emergence of macroscopic electromagnetism from atomic-scale interactions.
Related papers
- Full Microscopic Simulations Uncover Persistent Quantum Effects in Primary Photosynthesis [0.6597195879147557]
We report the first non-perturbative, accurate microscopic model simulations of the Fenna-Matthews-Olson photosynthetic complex.<n>We show that full microscopic simulations of nonlinear optical spectra are essential for identifying experimental evidence of quantum effects in photosynthesis.
arXiv Detail & Related papers (2025-03-21T16:29:59Z) - Dissipative Forces in Photon-Medium Interactions Using Perturbation Theory [0.0]
This study focuses on single Helium-4 atoms to study dissipative forces in photon-medium interactions.<n>Results have potential implications for advancing quantum information processing, nonlinear optics, and the study of dissipative mechanisms in quantum fluids.
arXiv Detail & Related papers (2024-11-26T21:40:00Z) - Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics [36.88715167286119]
Emitter dephasing is one of the key issues in the performance of solid-state single photon sources.
We show that it is possible to tune and engineer the coherence of photons emitted from a single WSe$$ monolayer dot via selectively coupling it to a spectral cavity resonance.
arXiv Detail & Related papers (2023-07-13T16:41:06Z) - Mid-infrared spectroscopy with a broadly tunable thin-film lithium
niobate optical parametric oscillator [45.82374977939355]
Device generates 25 mW of mid-infrared light at 3.2 microns, offering a power conversion efficiency of 15%.
We demonstrate the tuning and performance of the device by successfully measuring the spectra of methane and ammonia.
arXiv Detail & Related papers (2023-07-09T15:08:35Z) - Enhanced Spectral Density of a Single Germanium Vacancy Center in a
Nanodiamond by Cavity-Integration [35.759786254573896]
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV$-$), are promising candidates for many applications of quantum optics.
We demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P'erot microcavity.
arXiv Detail & Related papers (2023-07-03T10:33:06Z) - The maximum refractive index of an atomic crystal $\unicode{x2013}$ from
quantum optics to quantum chemistry [52.77024349608834]
We investigate the index of an ordered arrangement of atoms, as a function of atomic density.
In quantum optics, we show that ideal light-matter interactions can have a single-mode nature.
At the onset of quantum chemistry, we show how two physical mechanisms can open up inelastic or spatial multi-mode light scattering processes.
arXiv Detail & Related papers (2023-03-20T10:29:12Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Optomechanical Effects in Nanocavity-enhanced Resonant Raman Scattering
of a Single Molecule [7.8701096149524865]
We address the optomechanical effects in surface-enhanced resonant Raman scattering (SERRS) from a single molecule in a nano-particle on mirror (NPoM) nanocavity.
We develop a quantum master equation theory, which combines macroscopic quantum electrodynamics and electron-vibration interaction within the framework of open quantum system theory.
We use electromagnetic simulations and time-dependent density functional theory calculations to study the SERRS of a methylene blue molecule in a realistic NPoM nanocavity.
arXiv Detail & Related papers (2022-10-06T02:12:07Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Renormalization group analysis of near-field induced dephasing of
optical spin waves in an atomic medium [0.0]
We develop a comprehensive theory of dephasing dynamics for arbitrary times and atomic densities.
We quantitatively predict the dominant role that near-field optical interactions between nearby neighbors has in driving the dephasing process.
These results should shed light on the limits imposed by near-field interactions on quantum optical phenomena in dense atomic media.
arXiv Detail & Related papers (2021-08-20T17:03:29Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - Superradiant detection of microscopic optical dipolar interactions [4.481048642352541]
We demonstrate a method to perform background-free'' detection of the microscopic optical dynamics in a laser-cooled atomic ensemble.
This is made possible by transiently suppressing the macroscopic optical propagation over a substantial time.
We apply this technique to unveil and precisely characterize a density-dependent, microscopic dipolar dephasing effect.
arXiv Detail & Related papers (2021-01-26T13:39:06Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.