Renormalization group analysis of near-field induced dephasing of
optical spin waves in an atomic medium
- URL: http://arxiv.org/abs/2108.09268v1
- Date: Fri, 20 Aug 2021 17:03:29 GMT
- Title: Renormalization group analysis of near-field induced dephasing of
optical spin waves in an atomic medium
- Authors: Stefano Grava, Yizun He, Saijun Wu and Darrick E. Chang
- Abstract summary: We develop a comprehensive theory of dephasing dynamics for arbitrary times and atomic densities.
We quantitatively predict the dominant role that near-field optical interactions between nearby neighbors has in driving the dephasing process.
These results should shed light on the limits imposed by near-field interactions on quantum optical phenomena in dense atomic media.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While typical theories of atom-light interactions treat the atomic medium as
being smooth, it is well-known that microscopic optical effects driven by
atomic granularity, dipole-dipole interactions, and multiple scattering can
lead to important effects. Recently, for example, it was experimentally
observed that these ingredients can lead to a fundamental, density-dependent
dephasing of optical spin waves in a disordered atomic medium. Here, we go
beyond the short-time and dilute limits considered previously, to develop a
comprehensive theory of dephasing dynamics for arbitrary times and atomic
densities. In particular, we develop a novel, non-perturbative theory based on
strong disorder renormalization group, in order to quantitatively predict the
dominant role that near-field optical interactions between nearby neighbors has
in driving the dephasing process. This theory also enables one to capture the
key features of the many-atom dephasing dynamics in terms of an effective
single-atom model. These results should shed light on the limits imposed by
near-field interactions on quantum optical phenomena in dense atomic media, and
illustrate the promise of strong disorder renormalization group as a method of
dealing with complex microscopic optical phenomena in such systems.
Related papers
- Photon-mediated dipole-dipole interactions as a resource for quantum science and technology in cold atoms [0.0]
Photon-mediated dipole-dipole interactions arise from atom-light interactions.
Recent surge of interests promises this core mechanism of collective interactions as a resource to study quantum science.
arXiv Detail & Related papers (2024-10-28T01:55:35Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - Collective Spin-Light and Light-Mediated Spin-Spin Interactions in an
Optical Cavity [0.5396401833457565]
interaction between an atomic ensemble and a light mode in a high-finesse optical cavity can easily reach the strong-coupling regime.
We analyze the dominant effects on the collective atomic state and the light field.
We present analytical expressions for the entanglement induced by the interaction, and determine the conditions that maximize the entanglement-induced gain.
arXiv Detail & Related papers (2021-06-22T18:00:23Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Superradiant detection of microscopic optical dipolar interactions [4.481048642352541]
We demonstrate a method to perform background-free'' detection of the microscopic optical dynamics in a laser-cooled atomic ensemble.
This is made possible by transiently suppressing the macroscopic optical propagation over a substantial time.
We apply this technique to unveil and precisely characterize a density-dependent, microscopic dipolar dephasing effect.
arXiv Detail & Related papers (2021-01-26T13:39:06Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.