Direct Reasoning Optimization: LLMs Can Reward And Refine Their Own Reasoning for Open-Ended Tasks
- URL: http://arxiv.org/abs/2506.13351v1
- Date: Mon, 16 Jun 2025 10:43:38 GMT
- Title: Direct Reasoning Optimization: LLMs Can Reward And Refine Their Own Reasoning for Open-Ended Tasks
- Authors: Yifei Xu, Tusher Chakraborty, Srinagesh Sharma, Leonardo Nunes, Emre Kıcıman, Songwu Lu, Ranveer Chandra,
- Abstract summary: We propose Direct Reasoning Optimization (DRO), a reinforcement learning framework for fine-tuning Large Language Models (LLMs)<n>DRO is guided by a new reward signal: the Reasoning Reflection Reward (R3)<n>DRO consistently outperforms strong baselines while remaining broadly applicable across both open-ended and structured domains.
- Score: 6.881699020319577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Large Language Models (LLMs) have showcased impressive reasoning abilities in structured tasks like mathematics and programming, largely driven by Reinforcement Learning with Verifiable Rewards (RLVR), which uses outcome-based signals that are scalable, effective, and robust against reward hacking. However, applying similar techniques to open-ended long-form reasoning tasks remains challenging due to the absence of generic, verifiable reward signals. To address this, we propose Direct Reasoning Optimization (DRO), a reinforcement learning framework for fine-tuning LLMs on open-ended, particularly long-form, reasoning tasks, guided by a new reward signal: the Reasoning Reflection Reward (R3). At its core, R3 selectively identifies and emphasizes key tokens in the reference outcome that reflect the influence of the model's preceding chain-of-thought reasoning, thereby capturing the consistency between reasoning and reference outcome at a fine-grained level. Crucially, R3 is computed internally using the same model being optimized, enabling a fully self-contained training setup. Additionally, we introduce a dynamic data filtering strategy based on R3 for open-ended reasoning tasks, reducing cost while improving downstream performance. We evaluate DRO on two diverse datasets -- ParaRev, a long-form paragraph revision task, and FinQA, a math-oriented QA benchmark -- and show that it consistently outperforms strong baselines while remaining broadly applicable across both open-ended and structured domains.
Related papers
- Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - First Return, Entropy-Eliciting Explore [33.36310289456799]
Reinforcement Learning from Verifiable Rewards (RLVR) improves the reasoning abilities of Large Language Models (LLMs)<n>We propose FR3E, a structured exploration framework that identifies high-uncertainty decision points in reasoning trajectories.<n> Empirical results show that FR3E promotes more stable training, produces longer and more coherent responses, and increases the proportion of fully correct trajectories.
arXiv Detail & Related papers (2025-07-09T16:45:48Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Reason-to-Recommend: Using Interaction-of-Thought Reasoning to Enhance LLM Recommendation [9.282278040339138]
$textbfR2Rec$ is a reasoning-enhanced recommendation framework.<n>It samples interaction chains from the user-item graph and converts them into structured interaction-of-thoughts.
arXiv Detail & Related papers (2025-06-05T14:16:44Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - TACO: Think-Answer Consistency for Optimized Long-Chain Reasoning and Efficient Data Learning via Reinforcement Learning in LVLMs [50.820065021136024]
DeepSeek R1 has significantly advanced complex reasoning for large language models (LLMs)<n>Recent methods have attempted to replicate R1's reasoning capabilities in multimodal settings.<n>We propose TACO, a novel reinforcement learning algorithm for visual reasoning.
arXiv Detail & Related papers (2025-05-27T06:30:48Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models [83.8639566087953]
We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components.<n>DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted, progressively improving RAG components.<n>Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning.
arXiv Detail & Related papers (2025-05-05T23:54:53Z) - CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
Chain-of-thought (CoT) reasoning boosts large language models' (LLMs) performance on complex tasks.<n>We propose CoT-RAG, a novel reasoning framework with three key designs.<n>We show significant accuracy gains--ranging from 4.0% to 44.3%--over state-of-the-art methods.
arXiv Detail & Related papers (2025-04-18T07:55:09Z) - Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning [19.28434717501445]
Visual reasoning abilities play a crucial role in understanding complex multimodal data.<n>Existing methods improve VLM reasoning via Chain-of-Thought supervised fine-tuning.<n>We propose Reason-RFT, a novel reinforcement fine-tuning framework.
arXiv Detail & Related papers (2025-03-26T17:38:06Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)<n>RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.<n>RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - Vision-Language Models Can Self-Improve Reasoning via Reflection [20.196406628954303]
Chain-of-thought (CoT) has proven to improve the reasoning capability of large language models (LLMs)
We propose a self-training framework, R3V, which iteratively enhances the model's Vision-language Reasoning by Reflecting on CoT Rationales.
Our approach supports self-reflection on generated solutions, further boosting performance through test-time computation.
arXiv Detail & Related papers (2024-10-30T14:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.