Experimental Design for Semiparametric Bandits
- URL: http://arxiv.org/abs/2506.13390v2
- Date: Tue, 17 Jun 2025 08:20:19 GMT
- Title: Experimental Design for Semiparametric Bandits
- Authors: Seok-Jin Kim, Gi-Soo Kim, Min-hwan Oh,
- Abstract summary: We study finite-armed semiparametric bandits, where each arm's reward combines a linear component with an unknown, potentially adversarial shift.<n>We propose the first experimental-design approach that simultaneously offers a sharp regret bound, a PAC bound, and a best-arm identification guarantee.
- Score: 11.156009461711639
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study finite-armed semiparametric bandits, where each arm's reward combines a linear component with an unknown, potentially adversarial shift. This model strictly generalizes classical linear bandits and reflects complexities common in practice. We propose the first experimental-design approach that simultaneously offers a sharp regret bound, a PAC bound, and a best-arm identification guarantee. Our method attains the minimax regret $\tilde{O}(\sqrt{dT})$, matching the known lower bound for finite-armed linear bandits, and further achieves logarithmic regret under a positive suboptimality gap condition. These guarantees follow from our refined non-asymptotic analysis of orthogonalized regression that attains the optimal $\sqrt{d}$ rate, paving the way for robust and efficient learning across a broad class of semiparametric bandit problems.
Related papers
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
We study the generalized linear bandit (GLB) problem, a contextual multi-armed bandit framework that extends the classical linear model by incorporating a non-linear link function.<n>GLBs are widely applicable to real-world scenarios, but their non-linear nature introduces significant challenges in achieving both computational and statistical efficiency.<n>We propose a jointly efficient algorithm that attains a nearly optimal regret bound with $mathcalO(1)$ time and space complexities per round.
arXiv Detail & Related papers (2025-07-16T02:24:21Z) - Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
In bandit best-arm identification, an algorithm is tasked with finding the arm with highest mean reward with a specified accuracy as fast as possible.<n>We study multi-fidelity best-arm identification, in which the can choose to sample an arm at a lower fidelity (less accurate mean estimate) for a lower cost.<n>Several methods have been proposed for tackling this problem, but their optimality remain elusive, notably due to loose lower bounds on the total cost needed to identify the best arm.
arXiv Detail & Related papers (2024-06-05T08:02:40Z) - Robust Imitation via Mirror Descent Inverse Reinforcement Learning [18.941048578572577]
This paper proposes to predict a sequence of reward functions, which are iterative solutions for a constrained convex problem.
We prove that the proposed mirror descent update rule ensures robust minimization of a Bregman divergence.
Our IRL method was applied on top of an adversarial framework, and it outperformed existing adversarial methods in an extensive suite of benchmarks.
arXiv Detail & Related papers (2022-10-20T12:25:21Z) - On Kernelized Multi-Armed Bandits with Constraints [16.102401271318012]
We study a bandit problem with a general unknown reward function and a general unknown constraint function.
We propose a general framework for both algorithm performance analysis.
We demonstrate the superior performance of our proposed algorithms via numerical experiments.
arXiv Detail & Related papers (2022-03-29T14:02:03Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
We study the problem of online generalized linear regression in the setting of a generalized linear model with possibly unbounded additive noise.
We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise.
We propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
arXiv Detail & Related papers (2022-02-28T08:25:26Z) - Versatile Dueling Bandits: Best-of-both-World Analyses for Online
Learning from Preferences [28.79598714109439]
We study the problem of $K$-armed dueling bandit for both and adversarial environments.
We first propose a novel reduction from any (general) dueling bandits to multi-armed bandits.
Our algorithm is also the first to achieve an optimal $O(sum_i = 1K fraclog TDelta_i)$ regret bound against the Condorcet-winner benchmark.
arXiv Detail & Related papers (2022-02-14T13:37:23Z) - Bias-Robust Bayesian Optimization via Dueling Bandit [57.82422045437126]
We consider Bayesian optimization in settings where observations can be adversarially biased.
We propose a novel approach for dueling bandits based on information-directed sampling (IDS)
Thereby, we obtain the first efficient kernelized algorithm for dueling bandits that comes with cumulative regret guarantees.
arXiv Detail & Related papers (2021-05-25T10:08:41Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z) - Bias no more: high-probability data-dependent regret bounds for
adversarial bandits and MDPs [48.44657553192801]
We develop a new approach to obtaining high probability regret bounds for online learning with bandit feedback against an adaptive adversary.
Our approach relies on a simple increasing learning rate schedule, together with the help of logarithmically homogeneous self-concordant barriers and a strengthened Freedman's inequality.
arXiv Detail & Related papers (2020-06-14T22:09:27Z) - A General Theory of the Stochastic Linear Bandit and Its Applications [8.071506311915398]
We introduce a general analysis framework and a family of algorithms for the linear bandit problem.
Our new notion of optimism in expectation gives rise to a new algorithm, called sieved greedy (SG) that reduces the overexploration problem in OFUL.
In addition to proving that SG is theoretically rate optimal, our empirical simulations show that SG outperforms existing benchmarks such as greedy, OFUL, and TS.
arXiv Detail & Related papers (2020-02-12T18:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.