Realtime-Capable Hybrid Spiking Neural Networks for Neural Decoding of Cortical Activity
- URL: http://arxiv.org/abs/2506.13400v1
- Date: Mon, 16 Jun 2025 12:08:08 GMT
- Title: Realtime-Capable Hybrid Spiking Neural Networks for Neural Decoding of Cortical Activity
- Authors: Jann Krausse, Alexandru Vasilache, Klaus Knobloch, Juergen Becker,
- Abstract summary: Intra-cortical brain-machine interfaces (iBMIs) present a promising solution to restoring and decoding brain activity lost due to injury.<n>Patients with such neuroprosthetics suffer from permanent skull openings resulting from the devices' bulky wiring.<n>Most recently, spiking neural networks (SNNs) have been researched as potential candidates for low-power neural decoding.
- Score: 42.72938925647165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intra-cortical brain-machine interfaces (iBMIs) present a promising solution to restoring and decoding brain activity lost due to injury. However, patients with such neuroprosthetics suffer from permanent skull openings resulting from the devices' bulky wiring. This drives the development of wireless iBMIs, which demand low power consumption and small device footprint. Most recently, spiking neural networks (SNNs) have been researched as potential candidates for low-power neural decoding. In this work, we present the next step of utilizing SNNs for such tasks, building on the recently published results of the 2024 Grand Challenge on Neural Decoding Challenge for Motor Control of non-Human Primates. We optimize our model architecture to exceed the existing state of the art on the Primate Reaching dataset while maintaining similar resource demand through various compression techniques. We further focus on implementing a realtime-capable version of the model and discuss the implications of this architecture. With this, we advance one step towards latency-free decoding of cortical spike trains using neuromorphic technology, ultimately improving the lives of millions of paralyzed patients.
Related papers
- Finger Force Decoding from Motor Units Activity on Neuromorphic Hardware [1.8754256211583082]
We propose a novel approach to perform finger force regression using spike trains from individual motor neurons.<n>These biologically grounded signals drive a spiking neural network implemented on a mixed-signal neuromorphic processor.<n>This is the first demonstration of motor neuron-based continuous regression computed directly on neuromorphic hardware.
arXiv Detail & Related papers (2025-07-31T11:55:02Z) - Adaptively Pruned Spiking Neural Networks for Energy-Efficient Intracortical Neural Decoding [0.06181089784338582]
Spiking Neural Networks (SNNs) on neuromorphic hardware have demonstrated remarkable efficiency in neural decoding.<n>We introduce a novel adaptive pruning algorithm specifically designed for SNNs with high activation sparsity, targeting intracortical neural decoding.
arXiv Detail & Related papers (2025-04-15T19:16:34Z) - Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
arXiv Detail & Related papers (2024-09-06T17:48:44Z) - Decoding finger velocity from cortical spike trains with recurrent spiking neural networks [6.404492073110551]
Invasive brain-machine interfaces (BMIs) can significantly improve the life quality of motor-impaired patients.
BMIs must meet strict latency and energy constraints while providing reliable decoding performance.
We trained RSNNs to decode finger velocity from cortical spike trains of two macaque monkeys.
arXiv Detail & Related papers (2024-09-03T10:15:33Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
Spiking neural networks are a promising approach towards next-generation models of the brain in computational neuroscience.
We apply end-to-end learning with membrane potential-based backpropagation to a spiking convolutional auto-encoder.
We show that applying regularization on membrane potential and spiking output successfully avoids both dead and bursting neurons.
arXiv Detail & Related papers (2021-09-22T21:27:40Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.