Watermarking LLM-Generated Datasets in Downstream Tasks
- URL: http://arxiv.org/abs/2506.13494v1
- Date: Mon, 16 Jun 2025 13:51:49 GMT
- Title: Watermarking LLM-Generated Datasets in Downstream Tasks
- Authors: Yugeng Liu, Tianshuo Cong, Michael Backes, Zheng Li, Yang Zhang,
- Abstract summary: Large Language Models (LLMs) have experienced rapid advancements, with applications spanning a wide range of fields, including sentiment classification, review generation, and question answering.<n>Due to their efficiency and versatility, researchers and companies increasingly employ LLM-generated data to train their models.<n>The inability to track content produced by LLMs poses a significant challenge, potentially leading to copyright infringement for the LLM owners.<n>We propose a method for injecting watermarks into LLM-generated datasets, enabling the tracking of downstream tasks to detect whether these datasets were produced using the original LLM.
- Score: 26.31171813997747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have experienced rapid advancements, with applications spanning a wide range of fields, including sentiment classification, review generation, and question answering. Due to their efficiency and versatility, researchers and companies increasingly employ LLM-generated data to train their models. However, the inability to track content produced by LLMs poses a significant challenge, potentially leading to copyright infringement for the LLM owners. In this paper, we propose a method for injecting watermarks into LLM-generated datasets, enabling the tracking of downstream tasks to detect whether these datasets were produced using the original LLM. These downstream tasks can be divided into two categories. The first involves using the generated datasets at the input level, commonly for training classification tasks. The other is the output level, where model trainers use LLM-generated content as output for downstream tasks, such as question-answering tasks. We design a comprehensive set of experiments to evaluate both watermark methods. Our results indicate the high effectiveness of our watermark approach. Additionally, regarding model utility, we find that classifiers trained on the generated datasets achieve a test accuracy exceeding 0.900 in many cases, suggesting that the utility of such models remains robust. For the output-level watermark, we observe that the quality of the generated text is comparable to that produced using real-world datasets. Through our research, we aim to advance the protection of LLM copyrights, taking a significant step forward in safeguarding intellectual property in this domain.
Related papers
- DEEPQUESTION: Systematic Generation of Real-World Challenges for Evaluating LLMs Performance [3.9770095824794516]
We introduce DeepQuestion, a scalable automated framework that augments existing datasets based on Bloom's taxonomy.<n>We show substantial performance drops (even up to 70% accuracy loss) on higher-order tasks, underscoring persistent gaps in deep reasoning.
arXiv Detail & Related papers (2025-05-30T12:39:42Z) - Are Large Language Models Good Data Preprocessors? [5.954202581988127]
High-quality textual training data is essential for the success of multimodal data processing tasks.<n> outputs from image captioning models like BLIP and GIT often contain errors and anomalies that are difficult to rectify using rule-based methods.
arXiv Detail & Related papers (2025-02-24T02:57:21Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.<n>It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.<n>LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.<n>Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.<n>Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration.<n>To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - Improving the Ability of Pre-trained Language Model by Imparting Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.<n>We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
Data quality issues, such as incomplete documentation, inaccurate labels, ethical concerns, and outdated information, remain common in widely used datasets.<n>With the surging ability of large language models (LLM), it's promising to streamline the discovery of hidden dataset issues with LLM agents.<n>In this work, we establish a benchmark to measure LLM agent's ability to tackle this challenge.
arXiv Detail & Related papers (2024-06-11T14:02:23Z) - Under the Surface: Tracking the Artifactuality of LLM-Generated Data [21.002983022237604]
This work delves into the expanding role of large language models (LLMs) in generating artificial data.
To the best of our knowledge, this is the first study to aggregate various types of LLM-generated text data.
Despite artificial data's capability to match human performance, this paper reveals significant hidden disparities.
arXiv Detail & Related papers (2024-01-26T07:53:27Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Source Attribution for Large Language Model-Generated Data [57.85840382230037]
It is imperative to be able to perform source attribution by identifying the data provider who contributed to the generation of a synthetic text.
We show that this problem can be tackled by watermarking.
We propose a source attribution framework that satisfies these key properties due to our algorithmic designs.
arXiv Detail & Related papers (2023-10-01T12:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.