Understand the Implication: Learning to Think for Pragmatic Understanding
- URL: http://arxiv.org/abs/2506.13559v1
- Date: Mon, 16 Jun 2025 14:45:08 GMT
- Title: Understand the Implication: Learning to Think for Pragmatic Understanding
- Authors: Settaluri Lakshmi Sravanthi, Kishan Maharaj, Sravani Gunnu, Abhijit Mishra, Pushpak Bhattacharyya,
- Abstract summary: Pragmatics is the ability to infer meaning beyond literal interpretation.<n>Existing methods rely on annotated labels but overlook the reasoning process humans naturally use to interpret implicit meaning.<n>We introduce a novel pragmatic dataset, ImpliedPreference, that includes explicit reasoning (thoughts) for both correct and incorrect interpretations.
- Score: 34.34828731466766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pragmatics, the ability to infer meaning beyond literal interpretation, is crucial for social cognition and communication. While LLMs have been benchmarked for their pragmatic understanding, improving their performance remains underexplored. Existing methods rely on annotated labels but overlook the reasoning process humans naturally use to interpret implicit meaning. To bridge this gap, we introduce a novel pragmatic dataset, ImpliedMeaningPreference, that includes explicit reasoning (thoughts) for both correct and incorrect interpretations. Through preference-tuning and supervised fine-tuning, we demonstrate that thought-based learning significantly enhances LLMs' pragmatic understanding, improving accuracy by 11.12% across model families. We further discuss a transfer-learning study where we evaluate the performance of thought-based training for the other tasks of pragmatics (presupposition, deixis) that are not seen during the training time and observe an improvement of 16.10% compared to label-trained models.
Related papers
- The Pragmatic Mind of Machines: Tracing the Emergence of Pragmatic Competence in Large Language Models [6.187227278086245]
Large language models (LLMs) have demonstrated emerging capabilities in social intelligence tasks, including implicature resolution and theory-of-mind reasoning.<n>This work introduces RL ARAG, a dataset grounded in the pragmatic concept of alternatives, to evaluate whether LLMs can accurately infer nuanced intentions.<n>Our results show that even base models exhibit notable sensitivity to pragmatic cues, which improves consistently with increases in model and data scale.
arXiv Detail & Related papers (2025-05-24T04:24:59Z) - How to Probe: Simple Yet Effective Techniques for Improving Post-hoc Explanations [69.72654127617058]
Post-hoc importance attribution methods are a popular tool for "explaining" Deep Neural Networks (DNNs)<n>In this work we bring forward empirical evidence that challenges this very notion.<n>We discover a strong dependency on and demonstrate that the training details of a pre-trained model's classification layer play a crucial role.
arXiv Detail & Related papers (2025-03-01T22:25:11Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Understanding the Learning Dynamics of Alignment with Human Feedback [17.420727709895736]
This paper provides an attempt to theoretically analyze the learning dynamics of human preference alignment.
We show how the distribution of preference datasets influences the rate of model updates and provide rigorous guarantees on the training accuracy.
arXiv Detail & Related papers (2024-03-27T16:39:28Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Improving Language Models Meaning Understanding and Consistency by
Learning Conceptual Roles from Dictionary [65.268245109828]
Non-human-like behaviour of contemporary pre-trained language models (PLMs) is a leading cause undermining their trustworthiness.
A striking phenomenon is the generation of inconsistent predictions, which produces contradictory results.
We propose a practical approach that alleviates the inconsistent behaviour issue by improving PLM awareness.
arXiv Detail & Related papers (2023-10-24T06:15:15Z) - The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters
for Implicature Resolution by LLMs [26.118193748582197]
We evaluate four categories of widely used state-of-the-art models.
We find that, despite only evaluating on utterances that require a binary inference, models in three of these categories perform close to random.
These results suggest that certain fine-tuning strategies are far better at inducing pragmatic understanding in models.
arXiv Detail & Related papers (2022-10-26T19:04:23Z) - RELAX: Representation Learning Explainability [10.831313203043514]
We propose RELAX, which is the first approach for attribution-based explanations of representations.
ReLAX explains representations by measuring similarities in the representation space between an input and masked out versions of itself.
We provide theoretical interpretations of RELAX and conduct a novel analysis of feature extractors trained using supervised and unsupervised learning.
arXiv Detail & Related papers (2021-12-19T14:51:31Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
We propose a novel method to address two key issues: (a) Can we simultaneously learn fair disentangled representations while ensuring the utility of the learned representation for downstream tasks, and (b)Can we provide theoretical insights into when the proposed approach will be both fair and accurate.
To address the former, we propose the method FRIED, Fair Representation learning using Interpolation Enabled Disentanglement.
arXiv Detail & Related papers (2021-07-31T17:32:12Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
We propose a Semantics-Aware Inferential Network (SAIN) to meet such a motivation.
Taking explicit contextualized semantics as a complementary input, the inferential module of SAIN enables a series of reasoning steps over semantic clues.
Our model achieves significant improvement on 11 tasks including machine reading comprehension and natural language inference.
arXiv Detail & Related papers (2020-04-28T07:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.