Observation of many-body coherence in quasi-one-dimensional attractive Bose gases
- URL: http://arxiv.org/abs/2506.13597v2
- Date: Mon, 30 Jun 2025 12:21:21 GMT
- Title: Observation of many-body coherence in quasi-one-dimensional attractive Bose gases
- Authors: Hikaru Tamura, Sambit Banerjee, Rongjie Li, Panayotis Kevrekidis, Simeon I. Mistakidis, Chen-Lung Hung,
- Abstract summary: Macroscopic coherence is an important feature of quantum many-body systems exhibiting collective behaviors.<n>Here, we experimentally study the first- and second-order coherence of degenerate quasi-one-dimensional (1D) Bose gases quenched from repulsive to modulationally unstable interaction regimes.<n>The resulting dynamics reveals phase-coherent density wave evolutions arising from the interplay between noise-amplified density modulations and dispersive shock waves of broad interest within nonlinear physics.
- Score: 2.023140069605251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Macroscopic coherence is an important feature of quantum many-body systems exhibiting collective behaviors, with examples ranging from atomic Bose-Einstein condensates, and quantum liquids to superconductors. Probing many-body coherence in a dynamically unstable regime, however, presents an intriguing and outstanding challenge in out-of-equilibrium quantum many-body physics. Here, we experimentally study the first- and second-order coherence of degenerate quasi-one-dimensional (1D) Bose gases quenched from repulsive to modulationally unstable attractive interaction regimes. The resulting dynamics, monitored by in-situ density and matter-wave interference imaging, reveals phase-coherent density wave evolutions arising from the interplay between noise-amplified density modulations and dispersive shock waves of broad interest within nonlinear physics. At longer times, the gases become phase-scrambled, exhibiting a finite correlation length. Interestingly, following an interaction quench back to the repulsive regime, we observe that quasi-long-range coherence can be spontaneously re-established. This captivating rephasing dynamics can be attributed to the nucleation and annihilation of density defects in the quasi-1D geometry. These results shed light on out-of-equilibrium phase coherence in quantum many-body systems in a regime where beyond mean-field effects may arise and theoretical approaches have not been well-established.
Related papers
- Constrained many-body phases in a $\mathbb{Z}_2$-Higgs lattice gauge theory [39.58317527488534]
We study a one-dimensional $mathbbZ$ lattice gauge theory coupled to soft-core bosonic matter at unit filling.<n>Through a combination of analytical perturbative approaches, we uncover a rich phase diagram driven by gauge-field-mediated resonant pair hopping.<n>The presence of a bunching state with large number fluctuations motivates experimental realizations in hybrid boson-qubit quantum simulation platforms.
arXiv Detail & Related papers (2025-03-05T19:00:07Z) - Dephasing-assisted diffusive dynamics in superconducting quantum circuits [14.808613294313902]
We first demonstrate the diffusive dynamics assisted by controlled dephasing noise in superconducting quantum circuits.
We show that dephasing can enhance localization in a superconducting qubit array with quasiperiodic order.
By preparing different excitation distributions in the qubit array, we observe that a more localized initial state relaxes to a uniformly distributed mixed state faster with dephasing noise.
arXiv Detail & Related papers (2024-11-23T14:14:36Z) - Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Nonequilibrium dynamics of the Jaynes-Cummings dimer [0.0]
We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity.
Different types of transitions between the dynamical states lead to the self-trapping phenomenon.
For a particular "self-trapped" state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance.
arXiv Detail & Related papers (2023-07-02T16:49:10Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Dephasing and pseudo-coherent quantum dynamics in super-Ohmic
environments [0.0]
We investigate within a spin-boson model the influence of a super-Ohmic environment on the dynamics of a quantum two-state system.
Super-Ohmic purely dephasing fluctuations strongly suppress the amplitude of coherent dynamics at very short times.
The according phase separation line shows also a non-monotonous behaviour, very similar to the pseudo-coherent dynamics.
arXiv Detail & Related papers (2023-03-31T17:11:03Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Superglass formation in an atomic BEC with competing long-range
interactions [0.0]
We study a quantum many-body system with two competing and substantially different long-range interaction potentials.
The instability towards density order can give way to a superglass phase, i.e., a super disordered amorphous solid.
arXiv Detail & Related papers (2021-09-29T20:38:18Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.