Value-Free Policy Optimization via Reward Partitioning
- URL: http://arxiv.org/abs/2506.13702v2
- Date: Mon, 30 Jun 2025 11:57:40 GMT
- Title: Value-Free Policy Optimization via Reward Partitioning
- Authors: Bilal Faye, Hanane Azzag, Mustapha Lebbah,
- Abstract summary: We introduce Reward Partitioning Optimization (RPO), a new method for single-trajectory reinforcement learning.<n>RPO normalizes observed rewards using a approach estimated directly from data.<n>We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models.
- Score: 0.08192907805418585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-trajectory reinforcement learning (RL) methods aim to optimize policies from datasets consisting of (prompt, response, reward) triplets, where scalar rewards are directly available. This supervision format is highly practical, as it mirrors real-world human feedback, such as thumbs-up/down signals, and avoids the need for structured preference annotations. In contrast, pairwise preference-based methods like Direct Preference Optimization (DPO) rely on datasets with both preferred and dispreferred responses, which are harder to construct and less natural to collect. Among single-trajectory approaches, Direct Reward Optimization (DRO) has shown strong empirical performance due to its simplicity and stability. However, DRO requires approximating a value function, which introduces several limitations: high off-policy variance, coupling between policy and value learning, and a lack of absolute supervision on the policy itself. We introduce Reward Partitioning Optimization (RPO), a new method that resolves these limitations by removing the need to model the value function. Instead, RPO normalizes observed rewards using a partitioning approach estimated directly from data. This leads to a straightforward supervised learning objective on the policy, with no auxiliary models and no joint optimization. RPO provides direct and stable supervision on the policy, making it robust and easy to implement in practice. We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models. Our results demonstrate that RPO outperforms existing single-trajectory baselines such as DRO and Kahneman-Tversky Optimization (KTO). These findings confirm that RPO is a simple, effective, and theoretically grounded method for single-trajectory policy optimization.
Related papers
- SGPO: Self-Generated Preference Optimization based on Self-Improver [6.528083376369728]
Large language models (LLMs) require alignment to human preferences for practical and reliable deployment.<n>We propose Self-Generated Preference Optimization based on Self-Improver (SGPO)<n>The improver refines responses from a policy model to self-generate preference data for direct preference optimization (DPO) of the policy model.<n> Experimental results on AlpacaEval 2.0 and Arena-Hard show that the proposed SGPO significantly improves performance over DPO and baseline self-improving methods.
arXiv Detail & Related papers (2025-07-27T08:55:40Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning [55.33984461046492]
Policy-based methods currently dominate reinforcement learning pipelines for large language model (LLM) reasoning.<n>We introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs.<n>We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy via an improved change-of-trajectory-measure analysis.
arXiv Detail & Related papers (2025-05-21T09:41:53Z) - Entropy Controllable Direct Preference Optimization [3.536605202672355]
We propose a simple modification to DPO, H-DPO, which allows for control over the entropy of the resulting policy.<n>In our experiments, we show that H-DPO outperformed DPO across various tasks, demonstrating superior results in pass@$k$ evaluations for mathematical tasks.
arXiv Detail & Related papers (2024-11-12T07:09:44Z) - Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both [6.102274021710727]
This paper introduces DRDO (Direct Reward Distillation and policy-Optimization), which simultaneously models rewards and preferences to avoid degeneracy.<n>Results on the Ultrafeedback and TL;DR datasets demonstrate that DRDO-trained policies surpass methods such as DPO and e-DPO in terms of expected rewards.
arXiv Detail & Related papers (2024-10-11T02:19:11Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.<n>The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.<n>We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.<n>In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.<n>We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Learn Your Reference Model for Real Good Alignment [3.091688550418396]
offline methods for Large Language Models (LLMs) alignment are susceptible to overoptimization.<n>We propose a new paradigm of offline alignment methods, called Trust Region, which dynamically updates the reference policy throughout the training process.<n>Our results show that TR alignment methods effectively mitigate overoptimization, enabling models to maintain strong performance even when substantially deviating from the initial reference policy.
arXiv Detail & Related papers (2024-04-15T10:44:31Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.