Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning
- URL: http://arxiv.org/abs/2505.15311v1
- Date: Wed, 21 May 2025 09:41:53 GMT
- Title: Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning
- Authors: Yurun Yuan, Fan Chen, Zeyu Jia, Alexander Rakhlin, Tengyang Xie,
- Abstract summary: Policy-based methods currently dominate reinforcement learning pipelines for large language model (LLM) reasoning.<n>We introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs.<n>We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy via an improved change-of-trajectory-measure analysis.
- Score: 55.33984461046492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy-based methods currently dominate reinforcement learning (RL) pipelines for large language model (LLM) reasoning, leaving value-based approaches largely unexplored. We revisit the classical paradigm of Bellman Residual Minimization and introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs, yielding a simple yet effective off-policy algorithm that optimizes a single trajectory-level Bellman objective using the model's own logits as $Q$-values. TBRM removes the need for critics, importance-sampling ratios, or clipping, and operates with only one rollout per prompt. We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy data via an improved change-of-trajectory-measure analysis. Experiments on standard mathematical-reasoning benchmarks show that TBRM consistently outperforms policy-based baselines, like PPO and GRPO, with comparable or lower computational and memory overhead. Our results indicate that value-based RL might be a principled and efficient alternative for enhancing reasoning capabilities in LLMs.
Related papers
- Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Value-Free Policy Optimization via Reward Partitioning [0.08192907805418585]
We introduce Reward Partitioning Optimization (RPO), a new method for single-trajectory reinforcement learning.<n>RPO normalizes observed rewards using a approach estimated directly from data.<n>We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models.
arXiv Detail & Related papers (2025-06-16T17:06:27Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - Token-Efficient RL for LLM Reasoning [0.02488650627593658]
We propose reinforcement learning strategies tailored for reasoning in large language models (LLMs) under strict memory and compute limits.<n>Building on early policy gradient methods with baseline subtraction, we design critic-free methods that operate on a small, informative subset of output tokens.<n>We show that our methods raise accuracy on the SVAMP benchmark from 46% to over 70% and show strong performance on multi-digit multiplication.
arXiv Detail & Related papers (2025-04-29T14:58:43Z) - Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance [52.65461207786633]
Policy-based Reinforcement Learning from Human Feedback is essential for aligning large language models with human preferences.<n>It requires joint training of an actor and critic with a pretrained, fixed reward model for guidance.<n>We propose textbfDecoupled Value Policy Optimization (DVPO), a lean framework that replaces traditional reward modeling with a pretrained emphglobal value model (GVM)
arXiv Detail & Related papers (2025-02-24T08:11:33Z) - Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion [43.77763433288893]
We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data.<n>We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient.<n>We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task.
arXiv Detail & Related papers (2024-06-27T14:03:49Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.<n>In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.<n>We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - MICRO: Model-Based Offline Reinforcement Learning with a Conservative Bellman Operator [13.140242573639629]
offline reinforcement learning (RL) faces a significant challenge of distribution shift.
Model-free offline RL penalizes the Q value for out-of-distribution (OOD) data or constrains the policy closed to the behavior policy to tackle this problem.
This paper proposes a new model-based offline algorithm with a conservative Bellman operator (MICRO)
arXiv Detail & Related papers (2023-12-07T02:17:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.