ScholarSearch: Benchmarking Scholar Searching Ability of LLMs
- URL: http://arxiv.org/abs/2506.13784v2
- Date: Fri, 20 Jun 2025 15:48:51 GMT
- Title: ScholarSearch: Benchmarking Scholar Searching Ability of LLMs
- Authors: Junting Zhou, Wang Li, Yiyan Liao, Nengyuan Zhang, Tingjia Miao, Zhihui Qi, Yuhan Wu, Tong Yang,
- Abstract summary: We proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research.<n> ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments.<n>We expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks.
- Score: 5.562566989891248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs)' search capabilities have garnered significant attention. Existing benchmarks, such as OpenAI's BrowseComp, primarily focus on general search scenarios and fail to adequately address the specific demands of academic search. These demands include deeper literature tracing and organization, professional support for academic databases, the ability to navigate long-tail academic knowledge, and ensuring academic rigor. Here, we proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research. ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments, avoiding deliberately misleading models; High Difficulty, with answers that are challenging for single models (e.g., Grok DeepSearch or Gemini Deep Research) to provide directly, often requiring at least three deep searches to derive; Concise Evaluation, where limiting conditions ensure answers are as unique as possible, accompanied by clear sources and brief solution explanations, greatly facilitating subsequent audit and verification, surpassing the current lack of analyzed search datasets both domestically and internationally; and Broad Coverage, as the dataset spans at least 15 different academic disciplines. Through ScholarSearch, we expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks. The data is available at: https://huggingface.co/datasets/PKU-DS-LAB/ScholarSearch
Related papers
- DynaSearcher: Dynamic Knowledge Graph Augmented Search Agent via Multi-Reward Reinforcement Learning [4.817888539036794]
DynaSearcher is an innovative search agent enhanced by dynamic knowledge graphs and multi-reward reinforcement learning (RL)<n>We employ a multi-reward RL framework for fine-grained control over training objectives such as retrieval accuracy, efficiency, and response quality.<n> Experimental results demonstrate that our approach achieves state-of-the-art answer accuracy on six multi-hop question answering datasets.
arXiv Detail & Related papers (2025-07-23T09:58:31Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research.<n>We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn.<n>We demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking.
arXiv Detail & Related papers (2025-06-23T17:27:19Z) - SEM: Reinforcement Learning for Search-Efficient Large Language Models [26.075903427834838]
Large Language Models (LLMs) have demonstrated their capabilities not only in reasoning but also in invoking external tools.<n>Existing reinforcement learning approaches often lead to redundant search behaviors, resulting in inefficiencies and over-cost.<n>We propose SEM, a novel post-training reinforcement learning framework that explicitly trains LLMs to optimize search usage.
arXiv Detail & Related papers (2025-05-12T09:45:40Z) - ZeroSearch: Incentivize the Search Capability of LLMs without Searching [69.55482019211597]
We introduce ZeroSearch, a framework that incentivizes the capabilities of large language models to use a real search engine with simulated searches during training.<n>Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both useful and noisy documents.
arXiv Detail & Related papers (2025-05-07T17:30:22Z) - DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments [20.498100965239818]
We introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents.<n>Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web.<n>Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines.
arXiv Detail & Related papers (2025-04-04T04:41:28Z) - IntellectSeeker: A Personalized Literature Management System with the Probabilistic Model and Large Language Model [3.104439919958372]
We introduce IntellectSeeker, an innovative and personalized academic literature management platform.<n>This platform integrates a Large Language Model (LLM)--based semantic enhancement bot with a sophisticated probability model to personalize and streamline literature searches.
arXiv Detail & Related papers (2024-12-10T06:09:49Z) - ResearchArena: Benchmarking Large Language Models' Ability to Collect and Organize Information as Research Agents [21.17856299966841]
This study introduces ResearchArena, a benchmark designed to evaluate large language models (LLMs) in conducting academic surveys.<n>To support these opportunities, we construct an environment of 12M full-text academic papers and 7.9K survey papers.
arXiv Detail & Related papers (2024-06-13T03:26:30Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.