論文の概要: Enhancing interpretability of rule-based classifiers through feature graphs
- arxiv url: http://arxiv.org/abs/2506.13903v1
- Date: Mon, 16 Jun 2025 18:29:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.205069
- Title: Enhancing interpretability of rule-based classifiers through feature graphs
- Title(参考訳): 特徴グラフによるルールベース分類器の解釈可能性の向上
- Authors: Christel Sirocchi, Damiano Verda,
- Abstract要約: ルールベースシステムにおける特徴量推定のためのフレームワークを提案する。
グラフベースの機能可視化戦略も導入する。
臨床特徴の複合的予測価値に関する新たな知見を明らかにするために,本手法の能力について紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In domains where transparency and trustworthiness are crucial, such as healthcare, rule-based systems are widely used and often preferred over black-box models for decision support systems due to their inherent interpretability. However, as rule-based models grow complex, discerning crucial features, understanding their interactions, and comparing feature contributions across different rule sets becomes challenging. To address this, we propose a comprehensive framework for estimating feature contributions in rule-based systems, introducing a graph-based feature visualisation strategy, a novel feature importance metric agnostic to rule-based predictors, and a distance metric for comparing rule sets based on feature contributions. By experimenting on two clinical datasets and four rule-based methods (decision trees, logic learning machines, association rules, and neural networks with rule extraction), we showcase our method's capability to uncover novel insights on the combined predictive value of clinical features, both at the dataset and class-specific levels. These insights can aid in identifying new risk factors, signature genes, and potential biomarkers, and determining the subset of patient information that should be prioritised to enhance diagnostic accuracy. Comparative analysis of the proposed feature importance score with state-of-the-art methods on 15 public benchmarks demonstrates competitive performance and superior robustness. The method implementation is available on GitHub: https://github.com/ChristelSirocchi/rule-graph.
- Abstract(参考訳): 医療などの透明性と信頼性が不可欠である領域では、ルールベースのシステムは、その固有の解釈可能性のために、意思決定支援システムのブラックボックスモデルよりも広く使われ、しばしば好まれる。
しかし、ルールベースのモデルが複雑化するにつれて、重要な特徴の識別、相互作用の理解、異なるルールセット間の機能コントリビューションの比較が困難になる。
そこで本研究では,ルールベースシステムにおける特徴量推定のための包括的フレームワークを提案し,グラフベースの特徴量可視化戦略,ルールベース予測に非依存な特徴量尺度,特徴量に基づくルール集合の比較のための距離指標を提案する。
2つの臨床データセットと4つのルールベースの方法(決定木、論理学習機械、規則抽出の関連ルール、ニューラルネットワーク)を実験することにより、我々は、データセットとクラス固有のレベルで、臨床特徴の予測値の組み合わせに関する新しい洞察を明らかにする方法を紹介した。
これらの知見は、新しいリスクファクター、シグネチャ遺伝子、潜在的なバイオマーカーを特定し、診断精度を高めるために優先すべき患者の情報のサブセットを決定するのに役立つ。
提案した特徴重要度スコアと15の公開ベンチマークの最先端手法の比較分析により、競争性能と優れたロバスト性を示す。
メソッドの実装はGitHubで入手可能だ。
関連論文リスト
- Hybrid Interpretable Deep Learning Framework for Skin Cancer Diagnosis: Integrating Radial Basis Function Networks with Explainable AI [1.1049608786515839]
皮膚がんは世界中で最も流行し、致命的な疾患の1つである。
本稿では,畳み込みニューラルネットワーク(CNN)とラジアル基底関数(RBF)ネットワークを統合するハイブリッドディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-24T19:19:02Z) - Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping [0.24578723416255746]
特徴の選択は、モデルの解釈可能性を高める上で重要な役割を担います。
決定木を集約することで得られる精度は、解釈可能性の犠牲となる。
この研究では、教師なしランダムな森林から特徴グラフを構築するための新しい手法を紹介した。
論文 参考訳(メタデータ) (2024-04-27T12:47:37Z) - Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities [4.351859373879489]
ディープラーニングモデルにおける継承バイアスは、保護されたグループ間での予測精度の相違につながる可能性がある。
本稿では,正確な診断結果を達成し,交差点群間の公平性を確保するための枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-27T02:13:20Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Neural-based classification rule learning for sequential data [0.0]
本稿では,ルールに基づく二項分類のための局所パターンとグローバルパターンの両方を識別する,新しい可微分完全解釈法を提案する。
解釈可能なニューラルネットワークを備えた畳み込みバイナリニューラルネットワークと、動的に強化された間隔に基づくトレーニング戦略で構成されている。
合成データセットおよびオープンソースペプチドデータセットに対するアプローチの有効性と有用性を示す。
論文 参考訳(メタデータ) (2023-02-22T11:05:05Z) - Simple and Scalable Algorithms for Cluster-Aware Precision Medicine [0.0]
共同クラスタリングと埋め込みに対するシンプルでスケーラブルなアプローチを提案する。
この新しいクラスタ対応の埋め込みアプローチは、現在の共同埋め込みとクラスタリング法の複雑さと限界を克服する。
当社のアプローチでは,ユーザが希望するクラスタ数を選択する必要はなく,階層的にクラスタ化された埋め込みの解釈可能なデンドログラムを生成する。
論文 参考訳(メタデータ) (2022-11-29T19:27:26Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。