Membership Inference Attacks as Privacy Tools: Reliability, Disparity and Ensemble
- URL: http://arxiv.org/abs/2506.13972v2
- Date: Thu, 03 Jul 2025 17:45:38 GMT
- Title: Membership Inference Attacks as Privacy Tools: Reliability, Disparity and Ensemble
- Authors: Zhiqi Wang, Chengyu Zhang, Yuetian Chen, Nathalie Baracaldo, Swanand Kadhe, Lei Yu,
- Abstract summary: Membership inference attacks (MIAs) pose a significant threat to the privacy of machine learning models.<n>Prior MIA research has primarily focused on performance metrics such as AUC, accuracy, and TPR@low FPR.<n>These disparities have crucial implications for the reliability and completeness of MIAs as privacy evaluation tools.
- Score: 12.451650669707167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Membership inference attacks (MIAs) pose a significant threat to the privacy of machine learning models and are widely used as tools for privacy assessment, auditing, and machine unlearning. While prior MIA research has primarily focused on performance metrics such as AUC, accuracy, and TPR@low FPR - either by developing new methods to enhance these metrics or using them to evaluate privacy solutions - we found that it overlooks the disparities among different attacks. These disparities, both between distinct attack methods and between multiple instantiations of the same method, have crucial implications for the reliability and completeness of MIAs as privacy evaluation tools. In this paper, we systematically investigate these disparities through a novel framework based on coverage and stability analysis. Extensive experiments reveal significant disparities in MIAs, their potential causes, and their broader implications for privacy evaluation. To address these challenges, we propose an ensemble framework with three distinct strategies to harness the strengths of state-of-the-art MIAs while accounting for their disparities. This framework not only enables the construction of more powerful attacks but also provides a more robust and comprehensive methodology for privacy evaluation.
Related papers
- Differential Privacy in Machine Learning: From Symbolic AI to LLMs [49.1574468325115]
Differential privacy provides a formal framework to mitigate privacy risks.<n>It ensures that the inclusion or exclusion of any single data point does not significantly alter the output of an algorithm.
arXiv Detail & Related papers (2025-06-13T11:30:35Z) - Do Fairness Interventions Come at the Cost of Privacy: Evaluations for Binary Classifiers [17.243744418309593]
We assess the privacy risks of fairness-enhanced binary classifiers via membership inference attacks (MIAs) and attribute inference attacks (AIAs)<n>We uncover a potential threat mechanism that exploits prediction discrepancies between fair and biased models, leading to advanced attack results for both MIAs and AIAs.<n>Our study exposes the under-explored privacy threats in fairness studies, advocating for thorough evaluations of potential security vulnerabilities before model deployments.
arXiv Detail & Related papers (2025-03-08T10:21:21Z) - How Breakable Is Privacy: Probing and Resisting Model Inversion Attacks in Collaborative Inference [13.453033795109155]
Collaborative inference improves computational efficiency for edge devices by transmitting intermediate features to cloud models.<n>There is no established criterion for assessing the difficulty of model inversion attacks (MIAs)<n>We propose the first theoretical criterion to assess MIA difficulty in CI, identifying mutual information, entropy, and effective information volume as key influencing factors.
arXiv Detail & Related papers (2025-01-01T13:00:01Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.<n>Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.<n>This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - MIBench: A Comprehensive Framework for Benchmarking Model Inversion Attack and Defense [42.56467639172508]
Model Inversion (MI) attacks aim at leveraging the output information of target models to reconstruct privacy-sensitive training data.<n>We build the first practical benchmark named MIBench for systematic evaluation of model inversion attacks and defenses.
arXiv Detail & Related papers (2024-10-07T16:13:49Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Privacy Threats in Stable Diffusion Models [0.7366405857677227]
This paper introduces a novel approach to membership inference attacks (MIA) targeting stable diffusion computer vision models.
MIAs aim to extract sensitive information about a model's training data, posing significant privacy concerns.
We devise a black-box MIA that only needs to query the victim model repeatedly.
arXiv Detail & Related papers (2023-11-15T20:31:40Z) - Exploring Federated Unlearning: Review, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.<n>This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.<n>We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
We propose to investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks.
We demonstrate that the generalization gap and privacy leakage are less correlated than those of the previous results.
arXiv Detail & Related papers (2022-08-17T13:02:17Z) - "You Can't Fix What You Can't Measure": Privately Measuring Demographic
Performance Disparities in Federated Learning [78.70083858195906]
We propose differentially private mechanisms to measure differences in performance across groups while protecting the privacy of group membership.
Our results show that, contrary to what prior work suggested, protecting privacy is not necessarily in conflict with identifying performance disparities of federated models.
arXiv Detail & Related papers (2022-06-24T09:46:43Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - On the Effectiveness of Regularization Against Membership Inference
Attacks [26.137849584503222]
Deep learning models often raise privacy concerns as they leak information about their training data.
This enables an adversary to determine whether a data point was in a model's training set by conducting a membership inference attack (MIA)
While many regularization mechanisms exist, their effectiveness against MIAs has not been studied systematically.
arXiv Detail & Related papers (2020-06-09T15:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.