Bures-Wasserstein Flow Matching for Graph Generation
- URL: http://arxiv.org/abs/2506.14020v2
- Date: Mon, 23 Jun 2025 13:31:42 GMT
- Title: Bures-Wasserstein Flow Matching for Graph Generation
- Authors: Keyue Jiang, Jiahao Cui, Xiaowen Dong, Laura Toni,
- Abstract summary: Graph generation has emerged as a critical task in fields ranging from molecule design to drug discovery.<n>We introduce BWFlow, a flow-matching framework for graph generation that respects the underlying geometry of graphs.<n>The novel framework can be adapted to both continuous and discrete flow-matching algorithms.
- Score: 11.634569150774979
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph generation has emerged as a critical task in fields ranging from molecule design to drug discovery. Contemporary approaches, notably diffusion and flow-based models, have achieved solid graph generative performance through constructing a probability path that interpolates between a reference distribution and the data distribution. However, these methods typically model the evolution of individual nodes and edges independently and use linear interpolations to build the path assuming that the data lie in Euclidean space. We show that this is suboptimal given the intrinsic non-Euclidean structure and interconnected patterns of graphs, and it poses risks to the sampling convergence. To build a better probability path, we model the joint evolution of the nodes and edges by representing graphs as connected systems parameterized by Markov random fields (MRF). We then leverage the optimal transport displacement between MRF objects to design the probability path for graph generation. Based on this, we introduce BWFlow, a flow-matching framework for graph generation that respects the underlying geometry of graphs and provides smooth velocities in the probability path. The novel framework can be adapted to both continuous and discrete flow-matching algorithms. Experimental evaluations in plain graph generation and 2D/3D molecule generation validate the effectiveness of BWFlow in graph generation with competitive performance, stable training, and guaranteed sampling convergence.
Related papers
- A Deep Generative Model for the Simulation of Discrete Karst Networks [0.0]
We use graph generative models to represent karst networks as graphs.<n> nodes retain spatial information and properties, while edges signify connections between nodes.<n>We test our approach using real-world karst networks and compare generated subgraphs with actual subgraphs from the database.
arXiv Detail & Related papers (2025-06-11T15:10:41Z) - Wasserstein Flow Matching: Generative modeling over families of distributions [13.620905707751747]
We propose Wasserstein flow matching (WFM), which lifts flow matching onto families of distributions using the Wasserstein geometry.<n> Notably, WFM is the first algorithm capable of generating distributions in high dimensions, whether represented analytically (as Gaussians) or empirically (as point-clouds)
arXiv Detail & Related papers (2024-11-01T15:55:07Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
We propose a Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation.
Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through differential equations (SDE)
We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states.
arXiv Detail & Related papers (2023-01-01T15:24:15Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.