Wasserstein Flow Matching: Generative modeling over families of distributions
- URL: http://arxiv.org/abs/2411.00698v2
- Date: Sat, 17 May 2025 15:27:23 GMT
- Title: Wasserstein Flow Matching: Generative modeling over families of distributions
- Authors: Doron Haviv, Aram-Alexandre Pooladian, Dana Pe'er, Brandon Amos,
- Abstract summary: We propose Wasserstein flow matching (WFM), which lifts flow matching onto families of distributions using the Wasserstein geometry.<n> Notably, WFM is the first algorithm capable of generating distributions in high dimensions, whether represented analytically (as Gaussians) or empirically (as point-clouds)
- Score: 13.620905707751747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative modeling typically concerns transporting a single source distribution to a target distribution via simple probability flows. However, in fields like computer graphics and single-cell genomics, samples themselves can be viewed as distributions, where standard flow matching ignores their inherent geometry. We propose Wasserstein flow matching (WFM), which lifts flow matching onto families of distributions using the Wasserstein geometry. Notably, WFM is the first algorithm capable of generating distributions in high dimensions, whether represented analytically (as Gaussians) or empirically (as point-clouds). Our theoretical analysis establishes that Wasserstein geodesics constitute proper conditional flows over the space of distributions, making for a valid FM objective. Our algorithm leverages optimal transport theory and the attention mechanism, demonstrating versatility across computational regimes: exploiting closed-form optimal transport paths for Gaussian families, while using entropic estimates on point-clouds for general distributions. WFM successfully generates both 2D & 3D shapes and high-dimensional cellular microenvironments from spatial transcriptomics data. Code is available at https://github.com/DoronHav/WassersteinFlowMatching .
Related papers
- Bures-Wasserstein Flow Matching for Graph Generation [11.634569150774979]
Graph generation has emerged as a critical task in fields ranging from molecule design to drug discovery.<n>We introduce BWFlow, a flow-matching framework for graph generation that respects the underlying geometry of graphs.<n>The novel framework can be adapted to both continuous and discrete flow-matching algorithms.
arXiv Detail & Related papers (2025-06-16T21:36:56Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) is a generative model that aims to learn straight flow trajectories from noise to data.
We provide a theoretical analysis of the Wasserstein distance between the sampling distribution of RF and the target distribution.
We present general conditions guaranteeing uniqueness and straightness of 1-RF, which is in line with previous empirical findings.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Local Flow Matching Generative Models [19.859984725284896]
Local Flow Matching is a computational framework for density estimation based on flow-based generative models.
$textttLFM$ employs a simulation-free scheme and incrementally learns a sequence of Flow Matching sub-models.
We demonstrate the improved training efficiency and competitive generative performance of $textttLFM$ compared to FM.
arXiv Detail & Related papers (2024-10-03T14:53:10Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.
We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
We introduce a novel generative model for the representation of joint probability distributions of a possibly large number of discrete random variables.
The embedding of the flow via the Segre map in the meta-simplex of all discrete joint distributions ensures that any target distribution can be represented in principle.
Our approach has strong motivation from first principles of modeling coupled discrete variables.
arXiv Detail & Related papers (2024-06-06T21:58:33Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
Flow matching (FM) has gained significant attention as a simulation-free generative model.
This paper discusses the convergence properties of FM for large sample size under the $p$-Wasserstein distance.
We establish that FM can achieve an almost minimax optimal convergence rate for $1 leq p leq 2$, presenting the first theoretical evidence that FM can reach convergence rates comparable to those of diffusion models.
arXiv Detail & Related papers (2024-05-31T14:54:51Z) - Fisher Flow Matching for Generative Modeling over Discrete Data [12.69975914345141]
We introduce Fisher-Flow, a novel flow-matching model for discrete data.
Fisher-Flow takes a manifestly geometric perspective by considering categorical distributions over discrete data.
We prove that the gradient flow induced by Fisher-Flow is optimal in reducing the forward KL divergence.
arXiv Detail & Related papers (2024-05-23T15:02:11Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Adversarial Likelihood Estimation With One-Way Flows [44.684952377918904]
Generative Adversarial Networks (GANs) can produce high-quality samples, but do not provide an estimate of the probability density around the samples.
We show that our method converges faster, produces comparable sample quality to GANs with similar architecture, successfully avoids over-fitting to commonly used datasets and produces smooth low-dimensional latent representations of the training data.
arXiv Detail & Related papers (2023-07-19T10:26:29Z) - A generative flow for conditional sampling via optimal transport [1.0486135378491266]
This work proposes a non-parametric generative model that iteratively maps reference samples to the target.
The model uses block-triangular transport maps, whose components are shown to characterize conditionals of the target distribution.
These maps arise from solving an optimal transport problem with a weighted $L2$ cost function, thereby extending the data-driven approach in [Trigila and Tabak, 2016] for conditional sampling.
arXiv Detail & Related papers (2023-07-09T05:36:26Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
We propose in this paper to approximate the joint posterior over the structure of a Bayesian Network.
We use a single GFlowNet whose sampling policy follows a two-phase process.
Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models.
arXiv Detail & Related papers (2023-05-30T19:16:44Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
We introduce a novel statistical framework for learning a mixture of local normalizing flows as "chart maps" over a data manifold.
Our framework augments the expressivity of recent approaches while preserving the signature property of normalizing flows, that they admit exact density evaluation.
arXiv Detail & Related papers (2022-03-22T09:22:18Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Resampling Base Distributions of Normalizing Flows [0.0]
We introduce a base distribution for normalizing flows based on learned rejection sampling.
We develop suitable learning algorithms using both maximizing the log-likelihood and the optimization of the reverse Kullback-Leibler divergence.
arXiv Detail & Related papers (2021-10-29T14:44:44Z) - Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation [110.09855163856326]
This paper is about the problem of learning a policy for generating an object from a sequence of actions.
We propose GFlowNet, based on a view of the generative process as a flow network.
We prove that any global minimum of the proposed objectives yields a policy which samples from the desired distribution.
arXiv Detail & Related papers (2021-06-08T14:21:10Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.