Robust Physics-Informed Neural Network Approach for Estimating Heterogeneous Elastic Properties from Noisy Displacement Data
- URL: http://arxiv.org/abs/2506.14036v2
- Date: Wed, 18 Jun 2025 17:08:53 GMT
- Title: Robust Physics-Informed Neural Network Approach for Estimating Heterogeneous Elastic Properties from Noisy Displacement Data
- Authors: Tatthapong Srikitrungruang, Matthew Lemon, Sina Aghaee Dabaghan Fard, Jaesung Lee, Yuxiao Zhou,
- Abstract summary: IE-PINN is designed to robustly reconstruct heterogeneous distributions of elasticity parameters from noisy displacement data.<n> IE-PINN integrates three distinct neural network architectures dedicated to separately modeling displacement fields, strain fields, and elasticity distributions.
- Score: 4.1040852284977225
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately estimating spatially heterogeneous elasticity parameters, particularly Young's modulus and Poisson's ratio, from noisy displacement measurements remains significantly challenging in inverse elasticity problems. Existing inverse estimation techniques are often limited by instability, pronounced sensitivity to measurement noise, and difficulty in recovering absolute-scale Young's modulus. This work presents a novel Inverse Elasticity Physics-Informed Neural Network (IE-PINN) specifically designed to robustly reconstruct heterogeneous distributions of elasticity parameters from noisy displacement data based on linear elasticity physics. IE-PINN integrates three distinct neural network architectures dedicated to separately modeling displacement fields, strain fields, and elasticity distributions, thereby significantly enhancing stability and accuracy against measurement noise. Additionally, a two-phase estimation strategy is introduced: the first phase recovers relative spatial distributions of Young's modulus and Poisson's ratio, and the second phase calibrates the absolute scale of Young's modulus using imposed loading boundary conditions. Additional methodological innovations, including positional encoding, sine activation functions, and a sequential pretraining protocol, further enhance the model's performance and robustness. Extensive numerical experiments demonstrate that IE-PINN effectively overcomes critical limitations encountered by existing methods, delivering accurate absolute-scale elasticity estimations even under severe noise conditions. This advancement holds substantial potential for clinical imaging diagnostics and mechanical characterization, where measurements typically encounter substantial noise.
Related papers
- Evidential Physics-Informed Neural Networks [0.0]
We present a novel class of Physics-Informed Neural Networks that is formulated based on the principles of Evidential Deep Learning.<n>We show how to apply our model to inverse problems involving 1D and 2D nonlinear differential equations.
arXiv Detail & Related papers (2025-01-27T10:01:10Z) - Discovery and inversion of the viscoelastic wave equation in inhomogeneous media [3.6864706261549127]
Current sparse regression methods may identify inaccurate equations on sparse and noisy datasets.<n>We propose a hybrid framework that combines two alternating direction optimization phases: discovery and embedding.<n>The proposed method exhibits excellent robustness and accuracy, even when faced with high levels of noise.
arXiv Detail & Related papers (2024-09-27T01:05:45Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
arXiv Detail & Related papers (2024-08-15T17:07:40Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
We develop a novel UNet-based neural network model for inversion in elasticity (El-UNet)
We show superior performance, both in terms of accuracy and computational cost, by El-UNet compared to fully-connected physics-informed neural networks.
arXiv Detail & Related papers (2023-06-01T23:35:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
We propose PINNs for the calibration of models from full-field displacement and global force data in a realistic regime.
We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data.
arXiv Detail & Related papers (2022-12-15T11:01:32Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Noisy Recurrent Neural Networks [45.94390701863504]
We study recurrent neural networks (RNNs) trained by injecting noise into hidden states as discretizations of differential equations driven by input data.
We find that, under reasonable assumptions, this implicit regularization promotes flatter minima; it biases towards models with more stable dynamics; and, in classification tasks, it favors models with larger classification margin.
Our theory is supported by empirical results which demonstrate improved robustness with respect to various input perturbations, while maintaining state-of-the-art performance.
arXiv Detail & Related papers (2021-02-09T15:20:50Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.