論文の概要: Lightweight Relevance Grader in RAG
- arxiv url: http://arxiv.org/abs/2506.14084v1
- Date: Tue, 17 Jun 2025 00:52:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.278305
- Title: Lightweight Relevance Grader in RAG
- Title(参考訳): RAGにおける軽量レバレンスグレーダ
- Authors: Taehee Jeong,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の制限に対処する。
RAGは、関連するドキュメントを見つけるためにベクター検索を実行し、レスポンスを生成するために使用される。
関連するグレーダとして知られる二次モデルは、その妥当性を検証するために提供される。
本研究では,ラマ3.2-1bを関連するグレーダとして微調整し,0.1301から0.7750への精度向上を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) addresses limitations of large language models (LLMs) by leveraging a vector database to provide more accurate and up-to-date information. When a user submits a query, RAG executes a vector search to find relevant documents, which are then used to generate a response. However, ensuring the relevance of retrieved documents with a query would be a big challenge. To address this, a secondary model, known as a relevant grader, can be served to verify its relevance. To reduce computational requirements of a relevant grader, a lightweight small language model is preferred. In this work, we finetuned llama-3.2-1b as a relevant grader and achieved a significant increase in precision from 0.1301 to 0.7750. Its precision is comparable to that of llama-3.1-70b. Our code is available at https://github.com/taeheej/Lightweight-Relevance-Grader-in-RAG.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、ベクトルデータベースを活用してより正確で最新の情報を提供することによって、大規模言語モデル(LLM)の限界に対処する。
ユーザがクエリを提出すると、RAGはベクター検索を実行して関連するドキュメントを見つけ、応答を生成する。
しかし、検索したドキュメントをクエリで関連付けることは大きな課題である。
これを解決するために、関連するグレーダとして知られる二次モデルは、その関連性を検証するために提供される。
関連するグレーダの計算要求を低減するため、軽量な小言語モデルが好ましい。
本研究では,ラマ3.2-1bを関連するグレーダとして微調整し,0.1301から0.7750への精度向上を実現した。
精度はllama-3.1-70bに匹敵する。
私たちのコードはhttps://github.com/taeheej/Lightweight-Relevance-Grader-in-RAGで公開しています。
関連論文リスト
- Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval [22.33550491040999]
RAGは、大きな言語モデルを外部の証拠に基礎を置いているが、セマンティックに遠く離れた文書で答えをまとめなければならないと、いまだに混乱している。
私たちは、StatementGraphRAGとTopicGraphRAGという2つのプラグイン・アンド・プレイレトリバーを構築します。
提案手法は,検索リコールと正当性において平均23.1%の相対的改善を達成し,有意なチャンクベースRAGよりも優れていた。
論文 参考訳(メタデータ) (2025-06-09T17:58:35Z) - Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - Optimizing Query Generation for Enhanced Document Retrieval in RAG [53.10369742545479]
大規模言語モデル(LLM)は様々な言語タスクに優れるが、しばしば誤った情報を生成する。
Retrieval-Augmented Generation (RAG) は、正確な応答に文書検索を使用することによってこれを緩和することを目的としている。
論文 参考訳(メタデータ) (2024-07-17T05:50:32Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
BRIGHTは、関係する文書を検索するために、集中的推論を必要とする最初のテキスト検索ベンチマークである。
私たちのデータセットは、経済学、心理学、数学、コーディングなど、さまざまな領域にまたがる1,384の現実世界のクエリで構成されています。
クエリに関する明示的な推論を取り入れることで、検索性能が最大12.2ポイント向上することを示す。
論文 参考訳(メタデータ) (2024-07-16T17:58:27Z) - Don't Forget to Connect! Improving RAG with Graph-based Reranking [26.433218248189867]
本稿では,グラフニューラルネットワーク(GNN)に基づくリランカであるG-RAGについて紹介する。
提案手法は,文書と意味情報の相互接続(抽象表現平均グラフ)を組み合わせ,RAGの文脈インフォームドローダを提供する。
G-RAGは計算フットプリントを小さくしながら最先端のアプローチより優れている。
論文 参考訳(メタデータ) (2024-05-28T17:56:46Z) - Context Tuning for Retrieval Augmented Generation [1.201626478128059]
本稿では、スマートコンテキスト検索システムを用いて関連する情報を取得するRAGのためのコンテキストチューニングを提案する。
実験の結果,文脈調整が意味探索を著しく促進することが示された。
また,Reciprocal Rank Fusion (RRF) とMARTを用いた軽量モデルでは,GPT-4に基づく検索よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-09T23:33:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。