論文の概要: Leveraging Predictive Equivalence in Decision Trees
- arxiv url: http://arxiv.org/abs/2506.14143v1
- Date: Tue, 17 Jun 2025 03:11:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.309212
- Title: Leveraging Predictive Equivalence in Decision Trees
- Title(参考訳): 決定木における予測等価性の活用
- Authors: Hayden McTavish, Zachery Boner, Jon Donnelly, Margo Seltzer, Cynthia Rudin,
- Abstract要約: 決定木は解釈可能な機械学習に広く使われている。
本稿では,予測等価性を示さない決定木の表現について述べる。
決定木は、機能値のテスト時間不足に対して驚くほど堅牢であることを示す。
- 参考スコア(独自算出の注目度): 15.961209879141066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision trees are widely used for interpretable machine learning due to their clearly structured reasoning process. However, this structure belies a challenge we refer to as predictive equivalence: a given tree's decision boundary can be represented by many different decision trees. The presence of models with identical decision boundaries but different evaluation processes makes model selection challenging. The models will have different variable importance and behave differently in the presence of missing values, but most optimization procedures will arbitrarily choose one such model to return. We present a boolean logical representation of decision trees that does not exhibit predictive equivalence and is faithful to the underlying decision boundary. We apply our representation to several downstream machine learning tasks. Using our representation, we show that decision trees are surprisingly robust to test-time missingness of feature values; we address predictive equivalence's impact on quantifying variable importance; and we present an algorithm to optimize the cost of reaching predictions.
- Abstract(参考訳): 決定木は、明確に構造化された推論プロセスのため、解釈可能な機械学習に広く使用されている。
しかし、この構造は我々が予測同値(英: predictive equivalence)と呼ぶ挑戦であり、ある木の決定境界は多くの異なる決定木で表される。
決定境界は同じだが異なる評価プロセスを持つモデルの存在は、モデル選択を難しくする。
モデルが異なる変数の重要度を持ち、欠落した値の存在下で異なる振る舞いをするが、ほとんどの最適化手順は、返却すべきそのようなモデルを任意に選択する。
本稿では,予測等価性を示しない決定木をブール論理的に表現し,根底にある決定境界に忠実であることを示す。
私たちは、下流の機械学習タスクに表現を適用します。
我々の表現を用いて、決定木は、特徴値の試験時間欠落に対して驚くほど堅牢であることを示し、変数の重要性の定量化に対する予測等価性の影響に対処し、予測に到達するコストを最適化するアルゴリズムを提案する。
関連論文リスト
- Learning Decision Trees as Amortized Structure Inference [59.65621207449269]
本稿では,予測決定木アンサンブルを学習するためのハイブリッドアモータイズされた構造推論手法を提案する。
提案手法であるDT-GFNは,標準分類ベンチマークにおける最先端決定木やディープラーニング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-03-10T07:05:07Z) - DeforestVis: Behavior Analysis of Machine Learning Models with Surrogate Decision Stumps [46.58231605323107]
複雑なMLモデルの振る舞いを要約する視覚解析ツールであるDeforestVisを提案する。
DeforestVisは、より多くの切り株をインクリメンタルに生成することで、複雑さとフィデリティのトレードオフを探索するのに役立つ。
DeforestVisの適用性と有用性について,2つのユースケースと,データアナリストとモデル開発者とのエキスパートインタビューで紹介する。
論文 参考訳(メタデータ) (2023-03-31T21:17:15Z) - On the Pointwise Behavior of Recursive Partitioning and Its Implications
for Heterogeneous Causal Effect Estimation [8.394633341978007]
決定木学習は、ポイントワイズ推論にますます使われている。
適応決定木は、非消滅確率のノルムにおける収束の収束率を達成できないことを示す。
ランダムな森林は状況を改善することができ、貧弱な樹木をほぼ最適な手順に変えることができる。
論文 参考訳(メタデータ) (2022-11-19T21:28:30Z) - Optimal randomized classification trees [0.0]
分類と回帰木(英: Classification and Regression Trees、CART)は、現代の統計学と機械学習における既成の技術である。
CARTはgreedyプロシージャによって構築され、分割予測変数と関連するしきい値を逐次決定する。
この強欲なアプローチは、木を非常に高速に木に分類するが、その性質上、それらの分類精度は他の最先端の手順と競合しないかもしれない。
論文 参考訳(メタデータ) (2021-10-19T11:41:12Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Nonparametric Variable Screening with Optimal Decision Stumps [19.493449206135296]
単レベルCART決定木を用いた非パラメトリックモデルにおける変数選択に対する有限サンプル性能保証を導出する。
切削された基底展開を通じて各辺縁射影を直接推定しようとする従来の辺縁検定方法とは異なり、ここで用いられる適合モデルは単純で同相な決定スタンプである。
論文 参考訳(メタデータ) (2020-11-05T06:56:12Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
我々は,reDT(rerectified decision tree)と呼ばれる知識蒸留に基づく決定木拡張を提案する。
我々は,ソフトラベルを用いたトレーニングを可能にする標準決定木の分割基準と終了条件を拡張した。
次に,教師モデルから抽出したソフトラベルに基づいて,新しいジャックニフェ法を用いてReDTを訓練する。
論文 参考訳(メタデータ) (2020-08-21T10:45:25Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
様々な目的に対して最適な決定木を生成する手法を提案する。
また,連続変数が存在する場合に最適な結果が得られるスケーラブルなアルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-06-15T19:00:11Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。