論文の概要: Decision Machines: Congruent Decision Trees
- arxiv url: http://arxiv.org/abs/2101.11347v7
- Date: Sat, 16 Nov 2024 05:22:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:25.909302
- Title: Decision Machines: Congruent Decision Trees
- Title(参考訳): 決定機械:合同決定木
- Authors: Jinxiong Zhang,
- Abstract要約: 本稿では,ブール試験を二進ベクトル空間に埋め込み,木構造を行列として表現する決定機械を提案する。
我々は,決定木と注意機構の一致を探求し,決定木を最適化し,予測力を増強するための新たな道を開く。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The decision tree recursively partitions the input space into regions and derives axis-aligned decision boundaries from data. Despite its simplicity and interpretability, decision trees lack parameterized representation, which makes it prone to overfitting and difficult to find the optimal structure. We propose Decision Machines, which embed Boolean tests into a binary vector space and represent the tree structure as a matrices, enabling an interleaved traversal of decision trees through matrix computation. Furthermore, we explore the congruence of decision trees and attention mechanisms, opening new avenues for optimizing decision trees and potentially enhancing their predictive power.
- Abstract(参考訳): 決定木は入力空間を領域に再帰的に分割し、データから軸方向の決定境界を導出する。
その単純さと解釈性にもかかわらず、決定木にはパラメータ化表現がないため、過度に適合し、最適な構造を見つけるのが難しくなる。
本稿では,2進ベクトル空間にブール試験を埋め込み,木構造を行列として表現する決定機械を提案する。
さらに,決定木と注意機構の整合性を探求し,決定木を最適化し,予測力を増強する新たな道を開く。
関連論文リスト
- Learning accurate and interpretable decision trees [27.203303726977616]
我々は、同じドメインから繰り返しデータにアクセスして決定木学習アルゴリズムを設計するためのアプローチを開発する。
本研究では,ベイズ決定木学習における事前パラメータのチューニングの複雑さについて検討し,その結果を決定木回帰に拡張する。
また、学習した決定木の解釈可能性について検討し、決定木を用いた説明可能性と精度のトレードオフを最適化するためのデータ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-24T20:10:10Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Greedy Algorithm for Inference of Decision Trees from Decision Rule
Systems [0.0]
決定木と決定ルールシステムは属性、知識表現ツール、アルゴリズムとして重要な役割を果たす。
本稿では,逆変換問題について考察する。
本研究は,決定木全体を構築する代わりに,与えられた属性に対する決定木の操作をシミュレートする欲求時間アルゴリズムに焦点を当てる。
論文 参考訳(メタデータ) (2024-01-08T09:28:55Z) - Construction of Decision Trees and Acyclic Decision Graphs from Decision
Rule Systems [0.0]
本稿では,決定木を構成する複雑さと決定木を表す非周期決定グラフについて考察する。
決定木全体を構築しない可能性について論じるが、与えられた入力に対して、この木で計算経路を記述する。
論文 参考訳(メタデータ) (2023-05-02T18:40:48Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
バイレベル最適化(BO)は多くの現代の機械学習問題を解決する強力なツールとして生まれてきた。
既存の勾配法では、ヤコビアンあるいはヘッセンベクトル計算による二階微分近似が必要となる。
本稿では,進化戦略(ES)に基づく新しいBOアルゴリズムを提案し,BOの過勾配における応答ヤコビ行列を近似する。
論文 参考訳(メタデータ) (2021-10-13T19:36:50Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Genetic Adversarial Training of Decision Trees [6.85316573653194]
遺伝的アルゴリズムに基づく決定木のアンサンブルに関する新しい学習手法を提案し、その精度と敵対的な摂動に対する堅牢性を最大化するための決定木を訓練することができる。
本アルゴリズムをMeta-Silvae (MS) というツールに実装し, 対人訓練に用いる参照データセットを用いて実験的に評価した。
論文 参考訳(メタデータ) (2020-12-21T14:05:57Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - dtControl: Decision Tree Learning Algorithms for Controller
Representation [0.0]
決定木は証明可能な正確なコントローラを簡潔に表現するために使用することができる。
本稿では、メモリレスコントローラを決定木として表現するための簡易な合成ツールであるdtControlについて述べる。
論文 参考訳(メタデータ) (2020-02-12T17:13:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。