Enhancing Spectral Graph Neural Networks with LLM-Predicted Homophily
- URL: http://arxiv.org/abs/2506.14220v2
- Date: Tue, 05 Aug 2025 02:35:26 GMT
- Title: Enhancing Spectral Graph Neural Networks with LLM-Predicted Homophily
- Authors: Kangkang Lu, Yanhua Yu, Zhiyong Huang, Tat-Seng Chua,
- Abstract summary: Spectral Graph Neural Networks (SGNNs) have achieved remarkable performance in tasks such as node classification.<n>We propose a novel framework that leverages Large Language Models (LLMs) to estimate the homophily level of a graph.<n>Our framework consistently improves performance over strong SGNN baselines.
- Score: 48.135717446964385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral Graph Neural Networks (SGNNs) have achieved remarkable performance in tasks such as node classification due to their ability to learn flexible filters. Typically, these filters are learned under the supervision of downstream tasks, enabling SGNNs to adapt to diverse structural patterns. However, in scenarios with limited labeled data, SGNNs often struggle to capture the optimal filter shapes, resulting in degraded performance, especially on graphs with heterophily. Meanwhile, the rapid progress of Large Language Models (LLMs) has opened new possibilities for enhancing graph learning without modifying graph structure or requiring task-specific training. In this work, we propose a novel framework that leverages LLMs to estimate the homophily level of a graph and uses this global structural prior to guide the construction of spectral filters. Specifically, we design a lightweight and plug-and-play pipeline where a small set of labeled node pairs is formatted as natural language prompts for the LLM, which then predicts the graph's homophily ratio. This estimated value informs the spectral filter basis, enabling SGNNs to adapt more effectively to both homophilic and heterophilic structures. Extensive experiments on multiple benchmark datasets demonstrate that our LLM-assisted spectral framework consistently improves performance over strong SGNN baselines. Importantly, this enhancement incurs negligible computational and monetary cost, making it a practical solution for real-world graph applications.
Related papers
- Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling [1.2805157669888096]
We propose SDM-InstructGLM, a novel instruction-tuned Graph Language Model (InstructGLM) framework that enhances scalability and efficiency without relying on GNNs.<n>Our method introduces a similarity-degree-based biased random walk mechanism, which selectively samples and encodes graph information based on node-feature similarity and degree centrality.<n>Our results demonstrate the feasibility of LLM-only graph processing, enabling scalable and interpretable Graph Language Models (GLMs) optimized through instruction-based fine-tuning.
arXiv Detail & Related papers (2025-05-02T06:08:21Z) - Large-Scale Spectral Graph Neural Networks via Laplacian Sparsification: Technical Report [21.288230563135055]
We propose a novel graph spectral sparsification method to approximate the propagation patterns of spectral Graph Neural Networks (GNNs)<n>Our method allows the application of linear layers on the input node features, enabling end-to-end training as well as the handling of raw features.
arXiv Detail & Related papers (2025-01-08T15:36:19Z) - LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
We learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs.<n>LASE is interpretable, parameter efficient, robust to inputs with unobserved edges.<n>LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules.
arXiv Detail & Related papers (2024-12-23T17:35:19Z) - DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
Graph neural networks (GNNs) are gaining popularity for processing graph-structured data.
Existing methods generally use a fixed number of GNN layers to generate representations for all graphs.
We propose the depth adaptive mixture of expert (DA-MoE) method, which incorporates two main improvements to GNN.
arXiv Detail & Related papers (2024-11-05T11:46:27Z) - Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
We introduce AskGNN, a novel approach that bridges the gap between sequential text processing and graph-structured data.<n>AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs.<n> Experiments across three tasks and seven LLMs demonstrate AskGNN's superior effectiveness in graph task performance.
arXiv Detail & Related papers (2024-10-09T17:19:12Z) - Exploring the Potential of Large Language Models for Heterophilic Graphs [38.79574338268997]
We propose a two-stage framework for modeling heterophilic graphs using large language models (LLMs)<n>In the first stage, we fine-tune the LLM to better identify homophilic and heterophilic edges based on the textual content of their nodes.<n>In the second stage, we adaptively manage message propagation in GNNs for different edge types based on node features, structures, and heterophilic or homophilic characteristics.
arXiv Detail & Related papers (2024-08-26T09:29:56Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Label-free Node Classification on Graphs with Large Language Models
(LLMS) [46.937442239949256]
This work introduces a label-free node classification on graphs with Large Language Models pipeline, LLM-GNN.
Itates the strengths of both GNNs and LLMs while mitigating their limitations.
In particular, LLM-GNN can achieve an accuracy of 74.9% on a vast-scale dataset with a cost less than 1 dollar.
arXiv Detail & Related papers (2023-10-07T03:14:11Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.