synth-dacl: Does Synthetic Defect Data Enhance Segmentation Accuracy and Robustness for Real-World Bridge Inspections?
- URL: http://arxiv.org/abs/2506.14255v1
- Date: Tue, 17 Jun 2025 07:17:15 GMT
- Title: synth-dacl: Does Synthetic Defect Data Enhance Segmentation Accuracy and Robustness for Real-World Bridge Inspections?
- Authors: Johannes Flotzinger, Fabian Deuser, Achref Jaziri, Heiko Neumann, Norbert Oswald, Visvanathan Ramesh, Thomas Braml,
- Abstract summary: "synth-dacl" is a compilation of three novel dataset extensions based on synthetic concrete textures.<n>We observe substantial improvements in model robustness across 15 perturbed test sets.
- Score: 6.439226140891732
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Adequate bridge inspection is increasingly challenging in many countries due to growing ailing stocks, compounded with a lack of staff and financial resources. Automating the key task of visual bridge inspection, classification of defects and building components on pixel level, improves efficiency, increases accuracy and enhances safety in the inspection process and resulting building assessment. Models overtaking this task must cope with an assortment of real-world conditions. They must be robust to variations in image quality, as well as background texture, as defects often appear on surfaces of diverse texture and degree of weathering. dacl10k is the largest and most diverse dataset for real-world concrete bridge inspections. However, the dataset exhibits class imbalance, which leads to notably poor model performance particularly when segmenting fine-grained classes such as cracks and cavities. This work introduces "synth-dacl", a compilation of three novel dataset extensions based on synthetic concrete textures. These extensions are designed to balance class distribution in dacl10k and enhance model performance, especially for crack and cavity segmentation. When incorporating the synth-dacl extensions, we observe substantial improvements in model robustness across 15 perturbed test sets. Notably, on the perturbed test set, a model trained on dacl10k combined with all synthetic extensions achieves a 2% increase in mean IoU, F1 score, Recall, and Precision compared to the same model trained solely on dacl10k.
Related papers
- Determination Of Structural Cracks Using Deep Learning Frameworks [0.0]
This study introduces a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection.<n>In this research, various configurations of residual U-Net models were utilized.<n>The ensemble model achieved the highest scores, signifying superior accuracy.
arXiv Detail & Related papers (2025-07-03T08:24:47Z) - Ultra-Resolution Adaptation with Ease [62.56434979517156]
We propose a set of key guidelines for ultra-resolution adaptation termed emphURAE.<n>We show that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable.<n>Experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations.
arXiv Detail & Related papers (2025-03-20T16:44:43Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
We introduce Hybrid-Segmentor, an encoder-decoder based approach that is capable of extracting both fine-grained local and global crack features.
This allows the model to improve its generalization capabilities in distinguish various type of shapes, surfaces and sizes of cracks.
The proposed model outperforms existing benchmark models across 5 quantitative metrics (accuracy 0.971, precision 0.804, recall 0.744, F1-score 0.770, and IoU score 0.630), achieving state-of-the-art status.
arXiv Detail & Related papers (2024-09-04T16:47:16Z) - Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study [61.65123150513683]
multimodal foundation models, such as CLIP, produce state-of-the-art zero-shot results.
It is reported that these models close the robustness gap by matching the performance of supervised models trained on ImageNet.
We show that CLIP leads to a significant robustness drop compared to supervised ImageNet models on our benchmark.
arXiv Detail & Related papers (2024-03-15T17:33:49Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
We propose a novel uncertainty-guided class imbalance learning framework for imbalanced social event detection tasks.
Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.
arXiv Detail & Related papers (2023-10-30T03:32:04Z) - Defect Spectrum: A Granular Look of Large-Scale Defect Datasets with Rich Semantics [27.03052142039447]
We introduce the Defect Spectrum, a comprehensive benchmark that offers precise, semantic-abundant, and large-scale annotations for a wide range of industrial defects.
Building on four key industrial benchmarks, our dataset refines existing annotations and introduces rich semantic details, distinguishing multiple defect types within a single image.
We also introduce Defect-Gen, a two-stage diffusion-based generator designed to create high-quality and diverse defective images.
arXiv Detail & Related papers (2023-10-26T11:23:24Z) - dacl1k: Real-World Bridge Damage Dataset Putting Open-Source Data to the
Test [0.6827423171182154]
"dacl1k" is a multi-label RCD dataset for multi-label classification based on building inspections including 1,474 images.
We trained the models on different combinations of open-source data (meta datasets) which were subsequently evaluated both extrinsically and intrinsically.
The performance analysis on dacl1k shows practical usability of the meta data, where the best model shows an Exact Match Ratio of 32%.
arXiv Detail & Related papers (2023-09-07T15:05:35Z) - dacl10k: Benchmark for Semantic Bridge Damage Segmentation [0.0]
"dacl10k" is an exceptionally diverse RCD dataset for semantic segmentation comprising 9,920 images deriving from real-world bridge inspections.
"dacl10k" distinguishes 12 damage classes as well as 6 bridge components that play a key role in the building assessment and recommending actions.
arXiv Detail & Related papers (2023-09-01T13:46:24Z) - OOD-CV-v2: An extended Benchmark for Robustness to Out-of-Distribution
Shifts of Individual Nuisances in Natural Images [59.51657161097337]
OOD-CV-v2 is a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions.
In addition to this novel dataset, we contribute extensive experiments using popular baseline methods.
arXiv Detail & Related papers (2023-04-17T20:39:25Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - When Does Contrastive Learning Preserve Adversarial Robustness from
Pretraining to Finetuning? [99.4914671654374]
We propose AdvCL, a novel adversarial contrastive pretraining framework.
We show that AdvCL is able to enhance cross-task robustness transferability without loss of model accuracy and finetuning efficiency.
arXiv Detail & Related papers (2021-11-01T17:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.