Determination Of Structural Cracks Using Deep Learning Frameworks
- URL: http://arxiv.org/abs/2507.02416v1
- Date: Thu, 03 Jul 2025 08:24:47 GMT
- Title: Determination Of Structural Cracks Using Deep Learning Frameworks
- Authors: Subhasis Dasgupta, Jaydip Sen, Tuhina Halder,
- Abstract summary: This study introduces a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection.<n>In this research, various configurations of residual U-Net models were utilized.<n>The ensemble model achieved the highest scores, signifying superior accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
Related papers
- White-Basilisk: A Hybrid Model for Code Vulnerability Detection [50.49233187721795]
We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance.<n>White-Basilisk achieves results in vulnerability detection tasks with a parameter count of only 200M.<n>This research establishes new benchmarks in code security and provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks.
arXiv Detail & Related papers (2025-07-11T12:39:25Z) - Tady: A Neural Disassembler without Structural Constraint Violations [14.794789423601552]
We introduce Tady, a novel neural disassembler featuring an improved model architecture and a dedicated post-processing algorithm.<n>We show that Tady effectively eliminates structural constraint violations and functions with high efficiency, while maintaining instruction-level accuracy.
arXiv Detail & Related papers (2025-06-16T10:11:43Z) - xIDS-EnsembleGuard: An Explainable Ensemble Learning-based Intrusion Detection System [7.2738577621227085]
We focus on addressing the challenges of detecting malicious attacks in networks by designing an advanced Explainable Intrusion Detection System (xIDS)<n>Existing machine learning and deep learning approaches have invisible limitations, such as potential biases in predictions, a lack of interpretability, and the risk of overfitting to training data.<n>We propose an ensemble learning technique called "EnsembleGuard" to overcome these challenges.
arXiv Detail & Related papers (2025-03-01T20:49:31Z) - The BRAVO Semantic Segmentation Challenge Results in UNCV2024 [68.20197719071436]
We define two categories of reliability: (1) semantic reliability, which reflects the model's accuracy and calibration when exposed to various perturbations; and (2) OOD reliability, which measures the model's ability to detect object classes that are unknown during training.
The results reveal interesting insights into the importance of large-scale pre-training and minimal architectural design in developing robust and reliable semantic segmentation models.
arXiv Detail & Related papers (2024-09-23T15:17:30Z) - Situation Monitor: Diversity-Driven Zero-Shot Out-of-Distribution Detection using Budding Ensemble Architecture for Object Detection [5.706574483483306]
Situation Monitor is a novel zero-shot Out-of-Distribution (OOD) detection approach for transformer-based object detection models.
It enhances reliability in safety-critical machine learning applications such as autonomous driving.
arXiv Detail & Related papers (2024-06-05T12:20:36Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Neural Architecture Design and Robustness: A Dataset [11.83842808044211]
We introduce a database on neural architecture design and robustness evaluations.
We evaluate all these networks on a range of common adversarial attacks and corruption types.
We find that carefully crafting the topology of a network can have substantial impact on its robustness.
arXiv Detail & Related papers (2023-06-11T16:02:14Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - A Comprehensive Evaluation Framework for Deep Model Robustness [44.20580847861682]
Deep neural networks (DNNs) have achieved remarkable performance across a wide area of applications.
They are vulnerable to adversarial examples, which motivates the adversarial defense.
This paper presents a model evaluation framework containing a comprehensive, rigorous, and coherent set of evaluation metrics.
arXiv Detail & Related papers (2021-01-24T01:04:25Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.