論文の概要: LLM-Powered Intent-Based Categorization of Phishing Emails
- arxiv url: http://arxiv.org/abs/2506.14337v1
- Date: Tue, 17 Jun 2025 09:21:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.406862
- Title: LLM-Powered Intent-Based Categorization of Phishing Emails
- Title(参考訳): LLMを利用したフィッシングメールのインテント分類
- Authors: Even Eilertsen, Vasileios Mavroeidis, Gudmund Grov,
- Abstract要約: 本稿では,Large Language Models (LLMs) の実践的可能性について検討し,その意図に焦点をあててフィッシングメールを検出する。
LLMによって運用されている意図型分類を導入し、メールを異なるカテゴリに分類し、行動可能な脅威情報を生成する。
以上の結果から,既存のLCMではフィッシングメールの検出と分類が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phishing attacks remain a significant threat to modern cybersecurity, as they successfully deceive both humans and the defense mechanisms intended to protect them. Traditional detection systems primarily focus on email metadata that users cannot see in their inboxes. Additionally, these systems struggle with phishing emails, which experienced users can often identify empirically by the text alone. This paper investigates the practical potential of Large Language Models (LLMs) to detect these emails by focusing on their intent. In addition to the binary classification of phishing emails, the paper introduces an intent-type taxonomy, which is operationalized by the LLMs to classify emails into distinct categories and, therefore, generate actionable threat information. To facilitate our work, we have curated publicly available datasets into a custom dataset containing a mix of legitimate and phishing emails. Our results demonstrate that existing LLMs are capable of detecting and categorizing phishing emails, underscoring their potential in this domain.
- Abstract(参考訳): フィッシング攻撃は、現代のサイバーセキュリティにとって重要な脅威であり、人間と彼らを保護するための防御メカニズムの両方を騙すことに成功している。
従来の検知システムは、ユーザーが受信箱で見ることができないメールメタデータに重点を置いている。
さらに、これらのシステムはフィッシングメールに悩まされており、経験豊富なユーザーはテキストだけで経験的に識別することができる。
本稿では,Large Language Models (LLMs) の実践的可能性について検討する。
本報告では、フィッシングメールのバイナリ分類に加えて、LLMによって運用されている意図型分類を導入し、メールを異なるカテゴリに分類し、実用的な脅威情報を生成する。
作業を容易にするため、公開データセットを、正当なメールとフィッシングメールの混合を含むカスタムデータセットにキュレートしました。
以上の結果から,既存のLCMではフィッシングメールの検出と分類が可能であることが示唆された。
関連論文リスト
- Automated Profile Inference with Language Model Agents [67.32226960040514]
自動プロファイル推論(Automatic Profile Inference)と呼ばれる,LLMがオンラインの偽名にもたらす新たな脅威について検討する。
相手は、LDMに対して、疑似プラットフォーム上で公開されているユーザアクティビティから、機密性の高い個人属性を自動的に取り除き、抽出するように指示することができる。
実世界のシナリオにおけるこのような脅威の可能性を評価するために,AutoProfilerという自動プロファイリングフレームワークを導入する。
論文 参考訳(メタデータ) (2025-05-18T13:05:17Z) - Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
フィッシングメールのエスカレートする脅威は、Large Language Models(LLMs)の台頭により、ますます洗練されつつある。
攻撃者はLSMを利用して、より説得力があり回避的なフィッシングメールを作成するため、現在のフィッシング防御のレジリエンスを評価することが不可欠である。
我々は、Gmail Spam Filter、Apache SpamAssassin、Proofpointなどの従来のフィッシング検出と、SVM、Logistic Regression、Naive Bayesといった機械学習モデルに関する包括的な評価を行います。
以上の結果から,全検知器にまたがるリフレッシュメールの検出精度は著しく低下し,現在のフィッシング防御における重大な弱点が浮き彫りになった。
論文 参考訳(メタデータ) (2024-11-21T06:20:29Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
何十年にもわたるサイバー犯罪戦術であるフィッシングは、今日のデジタル世界において大きな脅威となっている。
本稿では,15大言語モデル (LLM) がフィッシング手法の検出に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-23T19:55:18Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
本研究では,大規模な言語モデル(LLM)を用いてフィッシングメールを検出するシステムChatSpamDetectorを紹介する。
LLM解析に適したプロンプトに電子メールデータを変換することにより、電子メールがフィッシングされているか否かを高精度に判定する。
総合的なフィッシングメールデータセットを用いて評価を行い,複数のLLMおよびベースラインシステムと比較した。
論文 参考訳(メタデータ) (2024-02-28T06:28:15Z) - Prompted Contextual Vectors for Spear-Phishing Detection [41.26408609344205]
スパイアフィッシング攻撃は重大なセキュリティ上の課題を示す。
本稿では,新しい文書ベクトル化手法に基づく検出手法を提案する。
提案手法は, LLM生成したスピアフィッシングメールの識別において, 91%のF1スコアを達成する。
論文 参考訳(メタデータ) (2024-02-13T09:12:55Z) - Email Summarization to Assist Users in Phishing Identification [1.433758865948252]
サイバーフィッシング攻撃は、特定の情報や手がかりが存在する場合にのみ、トレーニングデータによってより正確で、標的になり、調整される。
この研究は、トランスフォーマーベースの機械学習を活用して、将来的な心理的トリガーを分析する。
次に、この情報をアマルゲイトし、ユーザーに提示し、電子メールが「フィシー」なのか(ii)自己学習した先進的な悪意あるパターンなのかを簡単に判断できるようにします。
論文 参考訳(メタデータ) (2022-03-24T23:03:46Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。