論文の概要: Next-Generation Phishing: How LLM Agents Empower Cyber Attackers
- arxiv url: http://arxiv.org/abs/2411.13874v1
- Date: Thu, 21 Nov 2024 06:20:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:44.735380
- Title: Next-Generation Phishing: How LLM Agents Empower Cyber Attackers
- Title(参考訳): 次世代フィッシング:LLMエージェントがサイバー攻撃をいかに強化するか
- Authors: Khalifa Afane, Wenqi Wei, Ying Mao, Junaid Farooq, Juntao Chen,
- Abstract要約: フィッシングメールのエスカレートする脅威は、Large Language Models(LLMs)の台頭により、ますます洗練されつつある。
攻撃者はLSMを利用して、より説得力があり回避的なフィッシングメールを作成するため、現在のフィッシング防御のレジリエンスを評価することが不可欠である。
我々は、Gmail Spam Filter、Apache SpamAssassin、Proofpointなどの従来のフィッシング検出と、SVM、Logistic Regression、Naive Bayesといった機械学習モデルに関する包括的な評価を行います。
以上の結果から,全検知器にまたがるリフレッシュメールの検出精度は著しく低下し,現在のフィッシング防御における重大な弱点が浮き彫りになった。
- 参考スコア(独自算出の注目度): 10.067883724547182
- License:
- Abstract: The escalating threat of phishing emails has become increasingly sophisticated with the rise of Large Language Models (LLMs). As attackers exploit LLMs to craft more convincing and evasive phishing emails, it is crucial to assess the resilience of current phishing defenses. In this study we conduct a comprehensive evaluation of traditional phishing detectors, such as Gmail Spam Filter, Apache SpamAssassin, and Proofpoint, as well as machine learning models like SVM, Logistic Regression, and Naive Bayes, in identifying both traditional and LLM-rephrased phishing emails. We also explore the emerging role of LLMs as phishing detection tools, a method already adopted by companies like NTT Security Holdings and JPMorgan Chase. Our results reveal notable declines in detection accuracy for rephrased emails across all detectors, highlighting critical weaknesses in current phishing defenses. As the threat landscape evolves, our findings underscore the need for stronger security controls and regulatory oversight on LLM-generated content to prevent its misuse in creating advanced phishing attacks. This study contributes to the development of more effective Cyber Threat Intelligence (CTI) by leveraging LLMs to generate diverse phishing variants that can be used for data augmentation, harnessing the power of LLMs to enhance phishing detection, and paving the way for more robust and adaptable threat detection systems.
- Abstract(参考訳): フィッシングメールのエスカレートする脅威は、LLM(Large Language Models)の台頭とともに、ますます洗練されつつある。
攻撃者はLSMを利用して、より説得力があり回避的なフィッシングメールを作成するため、現在のフィッシング防御のレジリエンスを評価することが不可欠である。
本稿では,Gmail Spam Filter,Apache SpamAssassin,Proofpointなどの従来型のフィッシング検出と,SVM,Logistic Regression,Naive Bayesといったマシンラーニングモデルを用いて,従来型およびLLMで表現されたフィッシングメールの識別を行う。
また,NTTセキュリティホールディングスやJPモルガン・チェイスなどの企業がすでに採用しているフィッシング検出ツールとしてのLCMの役割についても検討する。
以上の結果から,全検知器にまたがるリフレッシュメールの検出精度は著しく低下し,現在のフィッシング防御における重大な弱点が浮き彫りになった。
脅威の状況が発展するにつれて、我々の発見は、高度なフィッシング攻撃を発生させる際の誤用を防ぐために、LSM生成コンテンツに対するより強力なセキュリティ制御と規制監督の必要性を浮き彫りにした。
この研究は、LCMを利用してデータ拡張に使用できる多様なフィッシング変種を生成し、LCMのパワーを利用してフィッシング検出を強化し、より堅牢で適応可能な脅威検出システムを構築することにより、より効果的なサイバー脅威情報(CTI)の開発に寄与する。
関連論文リスト
- Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models [10.58220151364159]
フィッシングはいまだに広範囲にわたるサイバー脅威であり、攻撃者は詐欺メールを使って被害者を誘惑し、機密情報を暴露している。
人工知能(AI)はフィッシング攻撃に対する防御において重要な要素となっているが、これらのアプローチは重大な制限に直面している。
本稿では,大規模言語モデル (LLM) と対向学習機構を活用するフレームワークであるPhishing Evolution Network (PEN) を提案し,高品質で現実的なフィッシングサンプルを連続的に生成する。
論文 参考訳(メタデータ) (2024-11-18T09:03:51Z) - APOLLO: A GPT-based tool to detect phishing emails and generate explanations that warn users [2.3618982787621]
大規模言語モデル(LLM)は、様々なドメインでテキスト処理を約束する。
我々は,OpenAIのGPT-4oに基づくツールであるAPOLLOを紹介し,フィッシングメールを検出し,説明メッセージを生成する。
また,20名の被験者を対象に,フィッシング警告として提示された4つの説明を比較検討した。
論文 参考訳(メタデータ) (2024-10-10T14:53:39Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
何十年にもわたるサイバー犯罪戦術であるフィッシングは、今日のデジタル世界において大きな脅威となっている。
本稿では,15大言語モデル (LLM) がフィッシング手法の検出に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-23T19:55:18Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
本研究では,大規模な言語モデル(LLM)を用いてフィッシングメールを検出するシステムChatSpamDetectorを紹介する。
LLM解析に適したプロンプトに電子メールデータを変換することにより、電子メールがフィッシングされているか否かを高精度に判定する。
総合的なフィッシングメールデータセットを用いて評価を行い,複数のLLMおよびベースラインシステムと比較した。
論文 参考訳(メタデータ) (2024-02-28T06:28:15Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - From Chatbots to PhishBots? -- Preventing Phishing scams created using
ChatGPT, Google Bard and Claude [3.7741995290294943]
本研究では,一般的な4つの大規模言語モデルを用いてフィッシング攻撃を発生させる可能性について検討する。
我々は、悪意のあるプロンプトの早期検出に使用できるBERTベースの自動検出ツールを構築した。
我々のモデルは4つの商用LCM間で転送可能であり、フィッシングサイトプロンプトの平均精度は96%、フィッシングメールプロンプトの平均精度は94%である。
論文 参考訳(メタデータ) (2023-10-29T22:52:40Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。