Compressed Video Super-Resolution based on Hierarchical Encoding
- URL: http://arxiv.org/abs/2506.14381v1
- Date: Tue, 17 Jun 2025 10:26:07 GMT
- Title: Compressed Video Super-Resolution based on Hierarchical Encoding
- Authors: Yuxuan Jiang, Siyue Teng, Qiang Zhu, Chen Feng, Chengxi Zeng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull,
- Abstract summary: VSR-HE upscales low-resolution videos by a ratio of four, from 180p to 720p or from 270p to 1080p.<n>The proposed VSR-HE has been officially submitted to the ICME 2025 Grand Challenge on VSR for Video Conferencing.
- Score: 24.869991871048764
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a general-purpose video super-resolution (VSR) method, dubbed VSR-HE, specifically designed to enhance the perceptual quality of compressed content. Targeting scenarios characterized by heavy compression, the method upscales low-resolution videos by a ratio of four, from 180p to 720p or from 270p to 1080p. VSR-HE adopts hierarchical encoding transformer blocks and has been sophisticatedly optimized to eliminate a wide range of compression artifacts commonly introduced by H.265/HEVC encoding across various quantization parameter (QP) levels. To ensure robustness and generalization, the model is trained and evaluated under diverse compression settings, allowing it to effectively restore fine-grained details and preserve visual fidelity. The proposed VSR-HE has been officially submitted to the ICME 2025 Grand Challenge on VSR for Video Conferencing (Team BVI-VSR), under both the Track 1 (General-Purpose Real-World Video Content) and Track 2 (Talking Head Videos).
Related papers
- CompressedVQA-HDR: Generalized Full-reference and No-reference Quality Assessment Models for Compressed High Dynamic Range Videos [46.255654141741815]
We introduce CompressedVQA-SDR, an effective VQA framework designed to address the challenges of HDR video quality assessment.<n>We adopt the Swin Transformer and SigLip 2 as the backbone networks for the proposed full-reference (FR) and no-reference (NR) VQA models, respectively.<n>Our models achieve state-of-the-art performance compared to existing FR and NR VQA models.
arXiv Detail & Related papers (2025-07-16T04:33:06Z) - RTSR: A Real-Time Super-Resolution Model for AV1 Compressed Content [10.569678424799616]
Super-resolution (SR) is a key technique for improving the visual quality of video content.
To support real-time playback, it is important to implement fast SR models while preserving reconstruction quality.
This paper proposes a low-complexity SR method, RTSR, designed to enhance the visual quality of compressed video content.
arXiv Detail & Related papers (2024-11-20T14:36:06Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [118.72266141321647]
Cross-Modality Video Coding (CMVC) is a pioneering approach to explore multimodality representation and video generative models in video coding.<n>During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes.<n>Experiments indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency.
arXiv Detail & Related papers (2024-08-15T11:36:18Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Implicit-explicit Integrated Representations for Multi-view Video
Compression [40.86402535896703]
We propose an implicit-explicit integrated representation for multi-view video compression.
The proposed framework combines the strengths of both implicit neural representation and explicit 2D datasets.
Our proposed framework can achieve comparable or even superior performance to the latest multi-view video compression standard MIV.
arXiv Detail & Related papers (2023-11-29T04:15:57Z) - Video Compression with Arbitrary Rescaling Network [8.489428003916622]
We propose a rate-guided arbitrary rescaling network (RARN) for video resizing before encoding.
The lightweight RARN structure can process FHD (1080p) content at real-time speed (91 FPS) and obtain a considerable rate reduction.
arXiv Detail & Related papers (2023-06-07T07:15:18Z) - Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method [69.868145936998]
Generative coding approaches have been identified as promising alternatives with reasonable perceptual rate-distortion trade-offs.
The great diversity of distortion types in spatial and temporal domains, ranging from the traditional hybrid coding frameworks to generative models, present grand challenges in compressed face video quality assessment (VQA)
We introduce the large-scale Compressed Face Video Quality Assessment (CFVQA) database, which is the first attempt to systematically understand the perceptual quality and diversified compression distortions in face videos.
arXiv Detail & Related papers (2023-04-14T11:26:09Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
Most videos on the web or mobile devices are compressed, and the compression can be severe when the bandwidth is limited.
We propose a new compression-informed video super-resolution model to restore high-resolution content without introducing artifacts caused by compression.
arXiv Detail & Related papers (2021-05-04T01:24:44Z) - BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation
and Alignment [90.81396836308085]
We show that by empowering recurrent framework with enhanced propagation and alignment, one can exploit video information more effectively.
Our model BasicVSR++ surpasses BasicVSR by 0.82 dB in PSNR with similar number of parameters.
BasicVSR++ generalizes well to other video restoration tasks such as compressed video enhancement.
arXiv Detail & Related papers (2021-04-27T17:58:31Z) - Efficient Video Compression via Content-Adaptive Super-Resolution [11.6624528293976]
Video compression is a critical component of Internet video delivery.
Recent work has shown that deep learning techniques can rival or outperform human algorithms.
This paper presents a new approach that augments a recent deep learning-based video compression scheme.
arXiv Detail & Related papers (2021-04-06T07:01:06Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
We propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network.
In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides.
arXiv Detail & Related papers (2020-03-04T09:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.