Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
- URL: http://arxiv.org/abs/2506.14399v2
- Date: Fri, 20 Jun 2025 14:06:08 GMT
- Title: Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
- Authors: Tian Xia, Fabio De Sousa Ribeiro, Rajat R Rasal, Avinash Kori, Raghav Mehta, Ben Glocker,
- Abstract summary: Decoupled-Free Guidance (DCFG) is a flexible and model-agnostic framework that introduces group-wise conditioning control.<n>DCFG builds on an attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups.<n>Experiments on CelebA-HQ, MIMIC-CXR, and EMBED show that DCFG improves intervention fidelity, mitigates unintended changes, and enhances reversibility.
- Score: 17.44485184010655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual image generation aims to simulate realistic visual outcomes under specific causal interventions. Diffusion models have recently emerged as a powerful tool for this task, combining DDIM inversion with conditional generation via classifier-free guidance (CFG). However, standard CFG applies a single global weight across all conditioning variables, which can lead to poor identity preservation and spurious attribute changes - a phenomenon known as attribute amplification. To address this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic framework that introduces group-wise conditioning control. DCFG builds on an attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups. For counterfactual generation, we partition attributes into intervened and invariant sets based on a causal graph and apply distinct guidance to each. Experiments on CelebA-HQ, MIMIC-CXR, and EMBED show that DCFG improves intervention fidelity, mitigates unintended changes, and enhances reversibility, enabling more faithful and interpretable counterfactual image generation.
Related papers
- Feedback Guidance of Diffusion Models [0.0]
Interval-Free Guidance (CFG) has become standard for improving sample fidelity in conditional diffusion models.<n>We propose FeedBack Guidance (FBG), which uses a state-dependent coefficient to self-regulate guidance amounts based on need.
arXiv Detail & Related papers (2025-06-06T13:46:32Z) - Normalized Attention Guidance: Universal Negative Guidance for Diffusion Models [57.20761595019967]
We present Normalized Attention Guidance (NAG), an efficient, training-free mechanism that applies extrapolation in attention space with L1-based normalization and refinement.<n>NAG restores effective negative guidance where CFG collapses while maintaining fidelity.<n>NAG generalizes across architectures (UNet, DiT), sampling regimes (few-step, multi-step), and modalities (image, video)
arXiv Detail & Related papers (2025-05-27T13:30:46Z) - Adaptive Classifier-Free Guidance via Dynamic Low-Confidence Masking [15.052244821404079]
We introduce Adaptive-Free Guidance (A-CFG), a novel method that tailors unconditional input by leveraging the model's predictive confidence.<n>A-CFG focuses on areas of ambiguity leading to more effective guidance.<n> Experiments on diverse language generation benchmarks show that A-CFG yields substantial improvements over standard CFG.
arXiv Detail & Related papers (2025-05-26T16:40:22Z) - Classifier-free Guidance with Adaptive Scaling [7.179513844921256]
Free guidance (CFG) is an essential mechanism in text-driven diffusion models.<n>In this paper, we present $beta$adaptive-CFG, which controls the impact of guidance during generation.<n>Our model obtained better FID scores, maintaining the text-to-image CLIP similarity scores at a level similar to that of the reference CFG.
arXiv Detail & Related papers (2025-02-14T22:04:53Z) - Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis [43.481539150288434]
This work introduces a new family of.
factor graph Diffusion Models (FG-DMs)
FG-DMs models the joint distribution of.
images and conditioning variables, such as semantic, sketch,.
deep or normal maps via a factor graph decomposition.
arXiv Detail & Related papers (2024-10-29T00:54:00Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features.
We introduce a novel method designed to supplement the model with domain-level and task-specific characteristics.
This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization.
arXiv Detail & Related papers (2024-01-18T04:23:21Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Disentangled Contrastive Collaborative Filtering [36.400303346450514]
Graph contrastive learning (GCL) has exhibited powerful performance in addressing the supervision label shortage issue.
We propose a Disentangled Contrastive Collaborative Filtering framework (DCCF) to realize intent disentanglement with self-supervised augmentation.
Our DCCF is able to not only distill finer-grained latent factors from the entangled self-supervision signals but also alleviate the augmentation-induced noise.
arXiv Detail & Related papers (2023-05-04T11:53:38Z) - Generative Model Based Noise Robust Training for Unsupervised Domain
Adaptation [108.11783463263328]
This paper proposes a Generative model-based Noise-Robust Training method (GeNRT)
It eliminates domain shift while mitigating label noise.
Experiments on Office-Home, PACS, and Digit-Five show that our GeNRT achieves comparable performance to state-of-the-art methods.
arXiv Detail & Related papers (2023-03-10T06:43:55Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
Unsupervised domain adaptation (UDA) has achieved unprecedented success in improving the cross-domain robustness of object detection models.
Existing UDA methods largely ignore the instantaneous data distribution during model learning, which could deteriorate the feature representation given large domain shift.
We propose a Self-Guided Adaptation (SGA) model, target at aligning feature representation and transferring object detection models across domains.
arXiv Detail & Related papers (2020-03-19T13:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.