Leveraging External Factors in Household-Level Electrical Consumption Forecasting using Hypernetworks
- URL: http://arxiv.org/abs/2506.14472v1
- Date: Tue, 17 Jun 2025 12:35:24 GMT
- Title: Leveraging External Factors in Household-Level Electrical Consumption Forecasting using Hypernetworks
- Authors: Fabien Bernier, Maxime Cordy, Yves Le Traon,
- Abstract summary: We show that a hypernetwork architecture can leverage external factors to enhance the accuracy of global electrical consumption forecasting models.<n>We collected a comprehensive dataset spanning two years, comprising consumption data from over 6000 luxembourgish households.
- Score: 15.77742422761257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate electrical consumption forecasting is crucial for efficient energy management and resource allocation. While traditional time series forecasting relies on historical patterns and temporal dependencies, incorporating external factors -- such as weather indicators -- has shown significant potential for improving prediction accuracy in complex real-world applications. However, the inclusion of these additional features often degrades the performance of global predictive models trained on entire populations, despite improving individual household-level models. To address this challenge, we found that a hypernetwork architecture can effectively leverage external factors to enhance the accuracy of global electrical consumption forecasting models, by specifically adjusting the model weights to each consumer. We collected a comprehensive dataset spanning two years, comprising consumption data from over 6000 luxembourgish households and corresponding external factors such as weather indicators, holidays, and major local events. By comparing various forecasting models, we demonstrate that a hypernetwork approach outperforms existing methods when associated to external factors, reducing forecasting errors and achieving the best accuracy while maintaining the benefits of a global model.
Related papers
- IISE PG&E Energy Analytics Challenge 2025: Hourly-Binned Regression Models Beat Transformers in Load Forecasting [0.0]
This study evaluates forecasting models ranging from classical regression techniques to advanced deep learning architectures.<n>The dataset includes two years of historical electricity load data, alongside temperature and global horizontal irradiance (GHI) across five sites.<n>Our results reveal that deep learning models, including TimeGPT, fail to consistently outperform simpler statistical and machine learning approaches.
arXiv Detail & Related papers (2025-05-16T15:55:34Z) - Machine Learning-based Regional Cooling Demand Prediction with Optimised Dataset Partitioning [7.745583292171836]
Accurately predicting cooling demand in urban domestic buildings is essential for maintaining energy efficiency.<n>This study introduces a generalised framework for developing high-resolution Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks.
arXiv Detail & Related papers (2025-03-04T12:43:33Z) - Powerformer: A Transformer with Weighted Causal Attention for Time-series Forecasting [50.298817606660826]
We introduce Powerformer, a novel Transformer variant that replaces noncausal attention weights with causal weights that are reweighted according to a smooth heavy-tailed decay.<n>Our empirical results demonstrate that Powerformer achieves state-of-the-art accuracy on public time-series benchmarks.<n>Our analyses show that the model's locality bias is amplified during training, demonstrating an interplay between time-series data and power-law-based attention.
arXiv Detail & Related papers (2025-02-10T04:42:11Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
We propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines.<n>The proposed model is evaluated using load data from 24 European countries over more than 9 years.
arXiv Detail & Related papers (2024-05-27T11:41:41Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for
Forecasting, with an Application to Electricity Smart Meter Data [3.0839245814393728]
We propose Local Interpretable Model-agnostic Rule-based Explanations for Forecasting (LIMREF) to explain global model forecasts.
Here, we evaluate the quality of the explanations produced by the LIMREF framework in terms of both qualitative and quantitative aspects.
arXiv Detail & Related papers (2022-02-15T22:35:11Z) - Investigating Underlying Drivers of Variability in Residential Energy
Usage Patterns with Daily Load Shape Clustering of Smart Meter Data [53.51471969978107]
Large-scale deployment of smart meters has motivated increasing studies to explore disaggregated daily load patterns.
This paper aims to shed light on the mechanisms by which electricity consumption patterns exhibit variability.
arXiv Detail & Related papers (2021-02-16T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.