IISE PG&E Energy Analytics Challenge 2025: Hourly-Binned Regression Models Beat Transformers in Load Forecasting
- URL: http://arxiv.org/abs/2505.11390v1
- Date: Fri, 16 May 2025 15:55:34 GMT
- Title: IISE PG&E Energy Analytics Challenge 2025: Hourly-Binned Regression Models Beat Transformers in Load Forecasting
- Authors: Millend Roy, Vladimir Pyltsov, Yinbo Hu,
- Abstract summary: This study evaluates forecasting models ranging from classical regression techniques to advanced deep learning architectures.<n>The dataset includes two years of historical electricity load data, alongside temperature and global horizontal irradiance (GHI) across five sites.<n>Our results reveal that deep learning models, including TimeGPT, fail to consistently outperform simpler statistical and machine learning approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate electricity load forecasting is essential for grid stability, resource optimization, and renewable energy integration. While transformer-based deep learning models like TimeGPT have gained traction in time-series forecasting, their effectiveness in long-term electricity load prediction remains uncertain. This study evaluates forecasting models ranging from classical regression techniques to advanced deep learning architectures using data from the ESD 2025 competition. The dataset includes two years of historical electricity load data, alongside temperature and global horizontal irradiance (GHI) across five sites, with a one-day-ahead forecasting horizon. Since actual test set load values remain undisclosed, leveraging predicted values would accumulate errors, making this a long-term forecasting challenge. We employ (i) Principal Component Analysis (PCA) for dimensionality reduction and (ii) frame the task as a regression problem, using temperature and GHI as covariates to predict load for each hour, (iii) ultimately stacking 24 models to generate yearly forecasts. Our results reveal that deep learning models, including TimeGPT, fail to consistently outperform simpler statistical and machine learning approaches due to the limited availability of training data and exogenous variables. In contrast, XGBoost, with minimal feature engineering, delivers the lowest error rates across all test cases while maintaining computational efficiency. This highlights the limitations of deep learning in long-term electricity forecasting and reinforces the importance of model selection based on dataset characteristics rather than complexity. Our study provides insights into practical forecasting applications and contributes to the ongoing discussion on the trade-offs between traditional and modern forecasting methods.
Related papers
- Data-driven Insights for Informed Decision-Making: Applying LSTM Networks for Robust Electricity Forecasting in Libya [0.0]
This study proposes a data-driven approach to forecast electricity load, generation, and deficits for 2025 in Benghazi, Libya.<n>Multiple time series models were applied, including ARIMA, seasonal ARIMA, dynamic regression ARIMA, exponential smoothing, extreme gradient boosting, and Long Short-Term Memory (LSTM) neural networks.<n>LSTM outperformed all other models, showing strong capabilities in modeling non-stationary and seasonal patterns.
arXiv Detail & Related papers (2025-06-20T23:41:41Z) - Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort? [0.0]
This study provides an extensive benchmark of state-of-the-art deep learning models for short-term load forecasting in energy communities.<n>LSTM, xLSTM, and Transformers are compared with benchmarks such as KNNs, synthetic load models, and persistence forecasting models.
arXiv Detail & Related papers (2025-01-09T06:29:50Z) - PowerMamba: A Deep State Space Model and Comprehensive Benchmark for Time Series Prediction in Electric Power Systems [6.516425351601512]
Time series prediction models are needed for closing the gap between the forecasted and actual grid outcomes.<n>We introduce a multivariate time series prediction model that combines traditional state space models with deep learning methods.<n>We release an extended dataset spanning five years of load, electricity price, ancillary service price, and renewable generation.
arXiv Detail & Related papers (2024-12-09T00:23:34Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
We propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines.<n>The proposed model is evaluated using load data from 24 European countries over more than 9 years.
arXiv Detail & Related papers (2024-05-27T11:41:41Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets.
Several deep learning models have been proposed in the literature for STLF, reporting promising results.
arXiv Detail & Related papers (2023-02-23T17:11:04Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.