GAMORA: A Gesture Articulated Meta Operative Robotic Arm for Hazardous Material Handling in Containment-Level Environments
- URL: http://arxiv.org/abs/2506.14513v1
- Date: Tue, 17 Jun 2025 13:40:16 GMT
- Title: GAMORA: A Gesture Articulated Meta Operative Robotic Arm for Hazardous Material Handling in Containment-Level Environments
- Authors: Farha Abdul Wasay, Mohammed Abdul Rahman, Hania Ghouse,
- Abstract summary: GAMORA is a novel VR-guided robotic system that enables remote execution of hazardous tasks using natural hand gestures.<n>Unlike existing scripted automation or traditional teleoperation, GAMORA integrates the Oculus Quest 2, NVIDIA Jetson Nano, and Robot Operating System (ROS)<n>The system supports VR-based training and simulation while executing precision tasks in physical environments via a 3D-printed robotic arm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The convergence of robotics and virtual reality (VR) has enabled safer and more efficient workflows in high-risk laboratory settings, particularly virology labs. As biohazard complexity increases, minimizing direct human exposure while maintaining precision becomes essential. We propose GAMORA (Gesture Articulated Meta Operative Robotic Arm), a novel VR-guided robotic system that enables remote execution of hazardous tasks using natural hand gestures. Unlike existing scripted automation or traditional teleoperation, GAMORA integrates the Oculus Quest 2, NVIDIA Jetson Nano, and Robot Operating System (ROS) to provide real-time immersive control, digital twin simulation, and inverse kinematics-based articulation. The system supports VR-based training and simulation while executing precision tasks in physical environments via a 3D-printed robotic arm. Inverse kinematics ensure accurate manipulation for delicate operations such as specimen handling and pipetting. The pipeline includes Unity-based 3D environment construction, real-time motion planning, and hardware-in-the-loop testing. GAMORA achieved a mean positional discrepancy of 2.2 mm (improved from 4 mm), pipetting accuracy within 0.2 mL, and repeatability of 1.2 mm across 50 trials. Integrated object detection via YOLOv8 enhances spatial awareness, while energy-efficient operation (50% reduced power output) ensures sustainable deployment. The system's digital-physical feedback loop enables safe, precise, and repeatable automation of high-risk lab tasks. GAMORA offers a scalable, immersive solution for robotic control and biosafety in biomedical research environments.
Related papers
- Unreal Robotics Lab: A High-Fidelity Robotics Simulator with Advanced Physics and Rendering [4.760567755149477]
This paper presents a novel simulation framework that integrates the Unreal Engine's advanced rendering capabilities with MuJoCo's high-precision physics simulation.<n>Our approach enables realistic robotic perception while maintaining accurate physical interactions.<n>We benchmark visual navigation and SLAM methods within our framework, demonstrating its utility for testing real-world robustness in controlled yet diverse scenarios.
arXiv Detail & Related papers (2025-04-19T01:54:45Z) - Hysteresis-Aware Neural Network Modeling and Whole-Body Reinforcement Learning Control of Soft Robots [14.02771001060961]
We present a soft robotic system designed for surgical applications.<n>We propose a whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion.<n>The proposed method showed strong performance in phantom-based surgical experiments.
arXiv Detail & Related papers (2025-04-18T09:34:56Z) - Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation [50.34179054785646]
We present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed.<n>Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs.<n>These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development.
arXiv Detail & Related papers (2025-04-17T12:57:11Z) - Digital Twin Synchronization: Bridging the Sim-RL Agent to a Real-Time Robotic Additive Manufacturing Control [2.5709786140685633]
This research advances the integration of Soft Actor-Critic with digital twins for industrial robotics applications.<n>The system architecture combines Unity's simulation environment with ROS2 for seamless digital twin synchronization.<n>Results show rapid policy convergence and robust task execution in both simulated and physical environments.
arXiv Detail & Related papers (2025-01-29T22:06:53Z) - RoMu4o: A Robotic Manipulation Unit For Orchard Operations Automating Proximal Hyperspectral Leaf Sensing [2.1038216828914145]
Leaf-level hyperspectral spectroscopy is shown to be a powerful tool for phenotyping, monitoring crop health, identifying essential nutrients within plants as well as detecting diseases and water stress.<n>This work introduces RoMu4o, a robotic manipulation unit for orchard operations offering an automated solution for proximal hyperspectral leaf sensing.
arXiv Detail & Related papers (2025-01-18T01:04:02Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.