DDS-NAS: Dynamic Data Selection within Neural Architecture Search via On-line Hard Example Mining applied to Image Classification
- URL: http://arxiv.org/abs/2506.14667v2
- Date: Tue, 24 Jun 2025 01:31:33 GMT
- Title: DDS-NAS: Dynamic Data Selection within Neural Architecture Search via On-line Hard Example Mining applied to Image Classification
- Authors: Matt Poyser, Toby P. Breckon,
- Abstract summary: We speed up Neural Architecture Search (NAS) training via dynamic hard example mining within a curriculum learning framework.<n>By maximising the contribution of each image sample during training, we reduce the duration of a NAS training cycle and the number of iterations required for convergence.
- Score: 13.427500787277031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to address the scalability challenge within Neural Architecture Search (NAS), we speed up NAS training via dynamic hard example mining within a curriculum learning framework. By utilizing an autoencoder that enforces an image similarity embedding in latent space, we construct an efficient kd-tree structure to order images by furthest neighbour dissimilarity in a low-dimensional embedding. From a given query image from our subsample dataset, we can identify the most dissimilar image within the global dataset in logarithmic time. Via curriculum learning, we then dynamically re-formulate an unbiased subsample dataset for NAS optimisation, upon which the current NAS solution architecture performs poorly. We show that our DDS-NAS framework speeds up gradient-based NAS strategies by up to 27x without loss in performance. By maximising the contribution of each image sample during training, we reduce the duration of a NAS training cycle and the number of iterations required for convergence.
Related papers
- Fair Differentiable Neural Network Architecture Search for Long-Tailed Data with Self-Supervised Learning [0.0]
This paper explores to improve the searching and training performance of NAS on long-tailed datasets.
We first discuss the related works about NAS and the deep learning method for long-tailed datasets.
Then, we focus on an existing work, called SSF-NAS, which integrates the self-supervised learning and fair differentiable NAS.
Finally, we conducted a series of experiments on the CIFAR10-LT dataset for performance evaluation.
arXiv Detail & Related papers (2024-06-19T12:39:02Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
We study the generalization properties of Neural Architecture Search (NAS) under a unifying framework.
We derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime.
We show how the derived results can guide NAS to select the top-performing architectures, even in the case without training.
arXiv Detail & Related papers (2022-09-15T12:11:41Z) - UnrealNAS: Can We Search Neural Architectures with Unreal Data? [84.78460976605425]
Neural architecture search (NAS) has shown great success in the automatic design of deep neural networks (DNNs)
Previous work has analyzed the necessity of having ground-truth labels in NAS and inspired broad interest.
We take a further step to question whether real data is necessary for NAS to be effective.
arXiv Detail & Related papers (2022-05-04T16:30:26Z) - HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D
Medical Image Segmentation using HyperNet [51.60655410423093]
We introduce HyperSegNAS to enable one-shot Neural Architecture Search (NAS) for medical image segmentation.
We show that HyperSegNAS yields better performing and more intuitive architectures compared to the previous state-of-the-art (SOTA) segmentation networks.
Our method is evaluated on public datasets from the Medical Decathlon (MSD) challenge, and achieves SOTA performances.
arXiv Detail & Related papers (2021-12-20T16:21:09Z) - ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image
Prior [6.098254376499899]
We show that optimal neural architectures in the DIP framework are image-dependent.
We propose an image-specific NAS strategy for the DIP framework that requires substantially less training than typical NAS approaches.
Our experiments show that image-specific metrics can reduce the search space to a small cohort of models, of which the best model outperforms current NAS approaches for image restoration.
arXiv Detail & Related papers (2021-11-27T13:53:25Z) - Searching Efficient Model-guided Deep Network for Image Denoising [61.65776576769698]
We present a novel approach by connecting model-guided design with NAS (MoD-NAS)
MoD-NAS employs a highly reusable width search strategy and a densely connected search block to automatically select the operations of each layer.
Experimental results on several popular datasets show that our MoD-NAS has achieved even better PSNR performance than current state-of-the-art methods.
arXiv Detail & Related papers (2021-04-06T14:03:01Z) - Memory-Efficient Hierarchical Neural Architecture Search for Image
Restoration [68.6505473346005]
We propose a memory-efficient hierarchical NAS HiNAS (HiNAS) for image denoising and image super-resolution tasks.
With a single GTX1080Ti GPU, it takes only about 1 hour for searching for denoising network on BSD 500 and 3.5 hours for searching for the super-resolution structure on DIV2K.
arXiv Detail & Related papers (2020-12-24T12:06:17Z) - Efficient Neural Architecture Search for End-to-end Speech Recognition
via Straight-Through Gradients [17.501966450686282]
We develop an efficient Neural Architecture Search (NAS) method via Straight-Through (ST) gradients, called ST-NAS.
Experiments over the widely benchmarked 80-hour WSJ and 300-hour Switchboard datasets show that ST-NAS induced architectures significantly outperform the human-designed architecture across the two datasets.
Strengths of ST-NAS such as architecture transferability and low computation cost in memory and time are also reported.
arXiv Detail & Related papers (2020-11-11T09:18:58Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z) - DCNAS: Densely Connected Neural Architecture Search for Semantic Image
Segmentation [44.46852065566759]
We propose a Densely Connected NAS (DCNAS) framework, which directly searches the optimal network structures for the multi-scale representations of visual information.
Specifically, by connecting cells with each other using learnable weights, we introduce a densely connected search space to cover an abundance of mainstream network designs.
We demonstrate that the architecture obtained from our DCNAS algorithm achieves state-of-the-art performances on public semantic image segmentation benchmarks.
arXiv Detail & Related papers (2020-03-26T13:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.