Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models
- URL: http://arxiv.org/abs/2506.14674v1
- Date: Tue, 17 Jun 2025 16:07:58 GMT
- Title: Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models
- Authors: Ling Li, Yao Zhou, Yuxuan Liang, Fugee Tsung, Jiaheng Wei,
- Abstract summary: New pipeline constructs reasoning-oriented geo-localization dataset, MP16-Reason, using diverse social media images.<n>We introduce GLOBE, Group-relative policy optimization for Locatability assessment and optimized visual-clue reasoning.<n>Results demonstrate that GLOBE outperforms state-of-the-art open-source LVLMs on geo-localization tasks.
- Score: 27.848962405476108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous methods for image geo-localization have typically treated the task as either classification or retrieval, often relying on black-box decisions that lack interpretability. The rise of large vision-language models (LVLMs) has enabled a rethinking of geo-localization as a reasoning-driven task grounded in visual cues. However, two major challenges persist. On the data side, existing reasoning-focused datasets are primarily based on street-view imagery, offering limited scene diversity and constrained viewpoints. On the modeling side, current approaches predominantly rely on supervised fine-tuning, which yields only marginal improvements in reasoning capabilities. To address these challenges, we propose a novel pipeline that constructs a reasoning-oriented geo-localization dataset, MP16-Reason, using diverse social media images. We introduce GLOBE, Group-relative policy optimization for Locatability assessment and Optimized visual-clue reasoning, yielding Bi-objective geo-Enhancement for the VLM in recognition and reasoning. GLOBE incorporates task-specific rewards that jointly enhance locatability assessment, visual clue reasoning, and geolocation accuracy. Both qualitative and quantitative results demonstrate that GLOBE outperforms state-of-the-art open-source LVLMs on geo-localization tasks, particularly in diverse visual scenes, while also generating more insightful and interpretable reasoning trajectories.
Related papers
- From Pixels to Places: A Systematic Benchmark for Evaluating Image Geolocalization Ability in Large Language Models [14.178064117544082]
Image geolocalization is important for applications in crisis response, digital forensics, and location-based intelligence.<n>Recent advances in large language models (LLMs) offer new opportunities for visual reasoning.<n>We introduce a benchmark called IMAGEO-Bench that systematically evaluates accuracy, distance error, geospatial bias, and reasoning process.
arXiv Detail & Related papers (2025-08-03T06:04:33Z) - VLM-Guided Visual Place Recognition for Planet-Scale Geo-Localization [24.433604332415204]
We propose a novel hybrid geo-localization framework that combines the strengths of vision-language models and visual place recognition.<n>We evaluate our approach on multiple geo-localization benchmarks and show that it consistently outperforms prior state-of-the-art methods.
arXiv Detail & Related papers (2025-07-23T12:23:03Z) - Evaluation of Geolocation Capabilities of Multimodal Large Language Models and Analysis of Associated Privacy Risks [9.003350058345442]
MLLMs are capable of inferring the geographic location of images based solely on visual content.<n>This poses serious risks of privacy invasion, including doxxing, surveillance, and other security threats.<n>The most advanced visual models can successfully localize the origin of street-level imagery with up to $49%$ accuracy within a 1-kilometer radius.
arXiv Detail & Related papers (2025-06-30T03:05:30Z) - GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains [11.704082783192467]
Geo Reason Enhancement (GRE) Suite is a novel framework that augments Visual Language Models with structured reasoning chains for interpretable location inference.<n>First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis.<n>Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision.
arXiv Detail & Related papers (2025-05-24T13:48:57Z) - GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks [84.86699025256705]
We present GEOBench-VLM, a benchmark specifically designed to evaluate Vision-Language Models (VLMs) on geospatial tasks.<n>Our benchmark features over 10,000 manually verified instructions and spanning diverse visual conditions, object types, and scales.<n>We evaluate several state-of-the-art VLMs to assess performance on geospatial-specific challenges.
arXiv Detail & Related papers (2024-11-28T18:59:56Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks.
This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2024-06-13T17:57:30Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - GeoReasoner: Geo-localization with Reasoning in Street Views using a Large Vision-Language Model [6.135404769437841]
This work tackles the problem of geo-localization with a new paradigm using a large vision-language model (LVLM)
Existing street-view datasets often contain numerous low-quality images lacking visual clues, and lack any reasoning inference.
To address the data-quality issue, we devise a CLIP-based network to quantify the degree of street-view images being locatable.
To enhance reasoning inference, we integrate external knowledge obtained from real geo-localization games, tapping into valuable human inference capabilities.
arXiv Detail & Related papers (2024-06-03T18:08:56Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z) - Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization [54.00111565818903]
Cross-view geo-localization is to spot images of the same geographic target from different platforms.
Existing methods usually concentrate on mining the fine-grained feature of the geographic target in the image center.
We introduce a simple and effective deep neural network, called Local Pattern Network (LPN), to take advantage of contextual information.
arXiv Detail & Related papers (2020-08-26T16:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.